Skip to main content
Library homepage
Engineering LibreTexts

5.7: Cryptography Applications

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Uses for Cryptography


    Cryptography is widely used on the internet to help protect user-data and prevent eavesdropping. To ensure secrecy during transmission, many systems use private key cryptography to protect transmitted information. With public-key systems, one can maintain secrecy without a master key or a large number of keys. But, some algorithms like Bitlocker and Veracrypt are generally not private-public key cryptography. Such as Veracrypt, it uses a password hash to generate the single private key. However, it can be configured to run in public-private key systems. The C++ opensource encryption library OpenSSL provides free and opensource encryption software and tools. The most commonly used encryption cipher suit is AES, as it has hardware acceleration for all x86 based processors that has AES-NI. A close contender is ChaCha20-Poly1305, which is a stream cipher, however it is commonly used for mobile devices as they are ARM based which does not feature AES-NI instruction set extension.


    Cryptography can be used to secure communications by encrypting them. Websites use encryption via HTTPS. "End-to-end" encryption, where only sender and receiver can read messages, is implemented for email in Pretty Good Privacy and for secure messaging in general in WhatsApp, Signal and Telegram.

    Operating systems use encryption to keep passwords secret, conceal parts of the system, and ensure that software updates are truly from the system maker. Instead of storing plaintext passwords, computer systems store hashes thereof; then, when a user logs in, the system passes the given password through a cryptographic hash function and compares it to the hashed value on file. In this manner, neither the system nor an attacker has at any point access to the password in plaintext.

    Encryption is sometimes used to encrypt one's entire drive. For example, University College London has implemented BitLocker (a program by Microsoft) to render drive data opaque without users logging in.

    Cryptocurrencies and Cryptoeconomics

    Cryptographic techniques enable cryptocurrency technologies, such as distributed ledger technologies (e.g., blockchains), which finance cryptoeconomics applications such as decentralized finance (DeFi). Key cryptographic techniques that enable cryptocurrencies and cryptoeconomics include, but are not limited to: cryptographic keys, cryptographic hash functions, asymmetric (public key) encryption, Multi-Factor Authentication (MFA), End-to-End Encryption (E2EE), and Zero Knowledge Proofs (ZKP)

    Adapted from: 
    "Cryptography" by Multiple AuthorsWikipedia is licensed under CC BY-SA 3.0

    This page titled 5.7: Cryptography Applications is shared under a CC BY-SA license and was authored, remixed, and/or curated by Patrick McClanahan.

    • Was this article helpful?