# 3.6: Computer Speed Factor

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

The speed of a computer is determined by many elements, some related to hardware and some related to software. In hardware, speed is improved by giving the electrons shorter distances to travel in completing a circuit. Since the first CPU was created in the early 1970s, engineers have constantly worked to figure out how to shrink these circuits and put more and more circuits onto the same chip – these are known as integrated circuits. And this work has paid off  as the speed of computing devices has been continuously improving.

Multi-core processors, or CPUs, have contributed to faster speeds. Intel engineers have also improved CPU speeds by using QuickPath Interconnect, a technique which minimizes the processor’s need to communicate directly with RAM or the hard drive. Instead, the CPU contains a cache of frequently used data for a particular program. An algorithm evaluates a program’s data usage and determines which data should be temporarily stored in the cache.

The hardware components that contribute to the speed of a personal computer are the CPU, the Motherboard, RAM, and the Hard Disk. In most cases, these items can be replaced with newer, faster components. The table below shows how each of these contributes to the speed of a computer. Besides upgrading hardware, there are many changes that can be made to the software of a computer to make it faster.

Component Speed
measured by
Units Description
CPU Clock
speed
GHz (billions of cycles) Hertz indicates the time it takes to complete a cycle.
Motherboard Bus
speed
MHz The speed at which data can move across the bus.
RAM Data
transfer rate
Mb/s (millions of bytes per second) The time it takes for data to be transferred from memory to system measured in Megabytes.
Hard Disk Access
time
ms (millisecond) The time it takes for the drive to locate the data to be accessed.
Data
transfer rate
MBit/s The time it takes for data to be transferred from disk to system.

3.6: Computer Speed Factor is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.