Skip to main content
Engineering LibreTexts

1.4: Second-Order ODE Models

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    A physical system that contains two energy storage elements is described by a second-order system model. Examples of second-order systems include an RLC circuit and an inertial mass with position output. The following examples illustrate second-order system models.

    Example 1.6: Series RLC circuit

    A series RLC circuit with voltage input \(V_s(t)\) and current output \(i(t)\) has the following governing relationship obtained by applying Kirchoff’s voltage law to the mesh:

    image4 \(L\frac{\rm di(t)}{\rm dt} +Ri(t)+\frac{1}{C} \int i(t){\rm dt=V_{\rm s} (t)\)

    image6 The integro-differential equation can by converted into a second-order ODE by expressing it in terms of the electric charge, \(q(t)\), as: image7 \(L\frac

    ParseError: invalid DekiScript (click for details)
        at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.04:_Second-Order_ODE_Models), /content/body/p[5]/span[2]/span, line 1, column 1

    Figure 7: A series RLC circuit. Alternatively, the series RLC circuit can be described in terms of two first-order ODE’s involving dual variables, the current, \(i(t)\), and the capacitor voltage, \(V_c(t)\), as:


    \(L\frac{\rm di(t)}{\rm dt} +Ri(t)+V_{c} (t)=V_

    ParseError: invalid DekiScript (click for details)
        at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.04:_Second-Order_ODE_Models), /content/body/p[8]/span[1]/span, line 1, column 1
    (t)\), \(C\frac{dV_c}{dt}=i(t)\)

    Figure 7: A series RLC circuit.

    Example 1.7: Inertial mass with position output

    An inertial mass in a constant gravitational field has both kinetic and potential energies, modeled by a second-order ODE. The vertical motion of a mass element of weight, \(mg\), that is pulled upward by a force, \(f(t)\), is described using position output, \(y(t)\), by a second-order ODE: \[m\frac{{\rm d}^{2} y(t)}{{\rm d}t^{2} } +mg=f(t).\]

    Figure 8: Motion of an inertial mass under gravity.

    Example 1.8: A mass–spring–damper system

    A mass–spring–damper system includes a mass affected by an applied force, \(f(t)\), when its motion is restrained by a combination of a spring and a damper (Figure 1.9). Let \(x(t)\) denote the displacement of the mass from a fixed reference; then, the dynamic equation of the system obtained by using Newton’s second law of motion takes a familiar form, given as: \[m\frac{{\rm d}^{2} x(t)}{{\rm d}t^{2} } +b\frac{{\rm d}x(t)}{{\rm d}t} +kx(t)=f(t).\]

    The left hand side in the above equation represents the sum of applied (inertial, damping, and spring) forces. In compact notation, we may express the ODE as: \[m\ddot{x}\; +\; b\dot{x}\; +\; kx=f\] where the dots above the variable represent time derivative, i.e., \(\dot{x}\left(t\right)=\frac{dx\left(t\right)}{dt}\), \(\ddot{x}\left(t\right)=\frac{d^2x\left(t\right)}{dt^2}\).

    In the absence of damping, the dynamic equation of the mass-spring system reduces to: \[m\frac{d^{\mathrm{2}}x\left(t\right)}{dt^{\mathrm{2}}}\mathrm{+}kx\left(t\right)\mathrm{=}f\mathrm{(}t\mathrm{)}.\] We may recognize that this equation models simple harmonic motion (SHM). Let \({\omega }^2_0=k/m\); then, it can be verified by substitution that the general solution to the equation is given as:

    image11 \(x\left(t\right)=A{\mathrm{cos} {\omega }_0\ }t+B{\mathrm{sin} {\omega }_0t\ }\).

    Figure 9: A mass–spring–damper system.

    1.4: Second-Order ODE Models is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?