1.7: DC Motor Model
- Page ID
- 17747
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A DC motor (Figure 1.11) represents an an electro-mechanical system that draws electrical energy and converts it into mechanical energy. In an armature-controlled DC motor, the input is the armature voltage, \(V_Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[1]/span[1]/span, line 1, column 1
In order to develop a model of the DC motor, let \(i_Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[2]/span[1]/span, line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[2]/span[6]/span, line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[2]/span[8]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[2]/span[8]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[2]/span[9]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[2]/span[9]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[2]/span[10]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[2]/span[10]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[2]/span[10]/span[3], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[2]/span[11]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[2]/span[11]/span[2], line 1, column 1
Figure 12: An armature-controlled DC motor.
In order to obtain a single input-output relation for the DC motor, we may solve the first euqation for \(i_a(s)\) and substitute in the second equation. Alternatively, we multiply the first equation by \(k_Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[2]/span, line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[4]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[4]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[4]/span[3], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[4]/span[4], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[5]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[5]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[5]/span[3], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[5]/span[4], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[10]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[10]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[10]/span[3], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[10]/span[4], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[11]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[11]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[12]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[12]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[12]/span[3], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[4]/span[12]/span[4], line 1, column 1
Example 1.11: A DC motor model
We assume that the parameter values for a small DC motor are given as: \(R=1\Omega ,\; L=0.01H,\; J=0.01\; kgm^{2} ,\; b=0.1\; \frac{N-s}{rad} ,\; {\rm a}nd\; k_{t} =k_{b} =0.05\); then, the transfer function of the DC motor is obtained as: \[\frac{\omega (s)}{V_Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[6]/span[2]/span, line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[6]/span[3]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[6]/span[3]/span[2], line 1, column 1
Assuming a unit-step input, the output of the DC motor is given as: \[\omega \left(s\right)=\frac{500}{s\left(s+10.28\right)\left(s+99.72\right)}=\frac{0.488}{s}-\frac{0.544}{s+10.28}+\frac{0.056}{s+99.72}\] By applying the inverse Laplace transform, the time-domain output is given as (Figure 13a): \[\omega \left(t\right)=\left[0.488-0.544e^{-10.28t}+0.056e^{-99.72t}\right]u\left(t\right)\]
Simplified DC motor Model. The DC motor model developed above is a second-order ODE model with two unequal (electrical and mechanical) time constants, where \(\tau _Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[8]/span[1]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[8]/span[1]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[8]/span[2]/span, line 1, column 1
A simplified model of the DC motor is obtained by ignoring the coil inductance (\(L\to 0\)), i.e., effectively ignoring the electrical time constant. The motor speed equation is modified as: \[R(Js+b)\omega (s)+k_Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[2]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[2]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[2]/span[3], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[2]/span[4], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[3]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[3]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[3]/span[3], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[3]/span[4], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[4]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[4]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[4]/span[3], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[5]/span[1], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[5]/span[2], line 1, column 1
Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[9]/span[5]/span[3], line 1, column 1
Example 1.12: A DC motor model (simplified)
Using the parameter values for a small DC motor (Example 1.11), its simplified transfer function model is obtained as: \[\frac{\omega (s)}{V_Callstack:
at (Courses/University_of_Arkansas_Little_Rock/Introduction_to_Control_Systems_(Iqbal)/01:_Mathematical_Models_of_Physical_Systems/1.07:_DC_Motor_Model), /content/body/p[11]/span[1]/span, line 1, column 1
Figure 13: DC motor response to unit-step input: second-order motor model (left); first-order motor model (right).