Given two components, \(Z_1\) and \(Z_2\), and a current feeding them, \(I_T\), the current through one of the components will equal the total current times the ratio of the opposite component over th...Given two components, \(Z_1\) and \(Z_2\), and a current feeding them, \(I_T\), the current through one of the components will equal the total current times the ratio of the opposite component over the sum of the impedance of the pair.
Given two components, \(Z_1\) and \(Z_2\), and a current feeding them, \(I_T\), the current through one of the components will equal the total current times the ratio of the opposite component over th...Given two components, \(Z_1\) and \(Z_2\), and a current feeding them, \(I_T\), the current through one of the components will equal the total current times the ratio of the opposite component over the sum of the impedance of the pair.