16: Applications of the direct stiffness method
( \newcommand{\kernel}{\mathrm{null}\,}\)
Applications of the directstiffness method
Coplanar trusses
The member stiffness matrix for a truss bar in the X-Y plane is developed from the analysis in article [sec6.1.1] on page . A typical bar of length L located between joints i and j is shown in figure [fig16.1]. The coordinates of beginning joint i are (Xi,Yi), and coordinates of the end joint j are (Xj,Yj), in the undeformed state. The angle between the positive X-direction and directed line element i-j is denoted as θ, and is determined from (cosθ)i−j=Xj−XiLi−j(sinθ)i−j=Yj−YiLi−jLi−j=√(Xj−Xi)2+(Yj−Yi)2.
The axial force Ni−j from eq. ([eq6.2]) on page is Ni−j=(EAL)i−jΔi−j−(NT)i−j.
Free body diagrams of the bar and joints i and j are shown figure [fig16.1]. External forces in the X- and Y-directions at joint i are denoted by Q2i−1 and Q2i, respectively, and external forces in the X- and Y-directions at joint j are denoted by Q2j−1 and Q2j, respectively. Equilibrium at joints i and j yield \boldsymbol{\begin{aligned}
\label{eq16.8}
Q_{2 i-1}+N_{i-j} \cos \theta=0, Q_{2 i}+N_{i-j} \sin \theta=0, Q_{2 j-1}-N_{i-j} \cos \theta=0,\mbox{ and }Q_{2 j}-N_{i-j} \sin \theta=0.\hspace*{4pt}\end{aligned}}
It is symmetric since the bar is linear elastic and the displacements are small.
The sum of column elements is zero. This results from equilibrium of the bar for each unit displacement state.
For example UDS 1 {q}=[10,00]T and the joint forces are
{Q}=[Q2i−1Q2iQ2j−1Q2j]T=(EA/L)[c2cs−c2−cs]T(1).
Sum forces horizontally Q2i−1+Q2j−1=(EA/L)(c2+(−c2))(1)=0.Sum forces vertically Q2i+Q2j=(EA/L)(cs+(−cs))(1)=0.
Sum moments about joint i LcQ2j−LsQ2j−1=L(EA/L)[c(−cs)−s(−c2)](1)=0.
Det[K]=0 since the bar is not restrained against rigid body displacements.
Diagonal elements are positive.
The fixed-end force vector is {Q0}i−j=[Q02i−1Q02iQ02j−1Q02j]=−[b](NT)i−j=−[−c−scs](NT)i−j.
Equation ([eq16.7]) is rewritten for bar i-j as Ni−j=[S]{q}i−j−(NT)i−j,
[ex16.1]Each bar in the three-bar truss shown in figure [fig16.2] has the same axial stiffness EA, and the joints are numbered as shown. The thermal forces in bar 1-2, 1-3, and 2-3 are denoted by (NT)1−2, (NT)1−3, and (NT)2−3, respectively. Determine the 6X6 unrestrained structural stiffness matrix and the 6X1 fixed-end action vector.
Solution.
The direction cosines and their products for each bar are listed in table [tab16.1].
The direction cosines from table [tab16.1] are inserted into eqs. ([eq16.12]) and ([eq16.13]), to get the 4X4 stiffness matrices and the 4X1 fixed-end actions for the truss member. The stiffness matrices are expanded to 6X6 by adding two rows and two columns of zeros, and the column vectors are expanded to 6X1 by adding two rows of zeros. Refer to the discussion in article [sec15.3] on page . The 6X1 vector of forces for bar 1-2 is \boldsymbol{\begin{aligned}
\label{eq16.1a}\tag{a}
\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{3} \\Q_{4} \\Q_{5} \\Q_{6}\end{array}\right]_{1-2}=\left(\frac{EA}{L}\right)\left[\begin{array}{@{}cccccc@{}}1 & 0 & -1 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 \\-1 & 0 & 1 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{@{}l@{}}q_{1} \\q_{2} \\q_{3} \\q_{4} \\q_{5} \\q_{6}\end{array}\right]-\left[\begin{array}{@{}c@{}}-1 \\0 \\1 \\0 \\0 \\0\end{array}\right]\left(N_{T}\right)_{1-2}.\end{aligned}}
\label{eq16.1b}\tag{b}
\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{3} \\Q_{4} \\Q_{5} \\Q_{6}\end{array}\right]_{1-3} = \left(\frac{EA}{L}\right)\left[\begin{array}{@{}cccccc@{}}0 & 0 & 0 & 0 & 0 & 0 \\0 & 1 & 0 & 0 & 0 & -1 \\0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 \\0 & -1 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{@{}c@{}}q_{1} \\q_{2} \\q_{3} \\q_{4} \\q_{5} \\q_{6}\end{array}\right]-\left[\begin{array}{@{}c@{}}0 \\-1 \\0 \\0 \\0 \\1\end{array}\right]\left(N_{T}\right)_{1-3}.\end{aligned}}
\label{eq16.1c}\tag{c}
\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{3} \\Q_{4} \\Q_{5} \\Q_{6}\end{array}\right]_{2-3} = \left(\frac{EA}{RL}\right)\left[\begin{array}{@{}cccccc@{}}0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 1 / 2 & -1 / 2 & -1 / 2 & 1 / 2 \\0 & 0 & -1 / 2 & 1 / 2 & 1 / 2 & -1 / 2 \\0 & 0 & -1 / 2 & 1 / 2 & 1 / 2 & -1 / 2 \\0 & 0 & 1 / 2 & -1 / 2 & -1 / 2 & 1 / 2\end{array}\right]\left[\begin{array}{@{}c@{}}q_{1} \\q_{2} \\q_{3} \\q_{4} \\q_{5} \\q_{6}\end{array}\right]\left[\begin{array}{@{}c@{}}0 \\0 \\1 / \sqrt{2} \\-1 / \sqrt{2} \\-1 / \sqrt{2} \\1 / \sqrt{2}\end{array}\right]\left(N_{T}\right)_{2-3}.\end{aligned}}
\label{eq16.1d}\tag{d}
\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{3} \\Q_{4} \\Q_{5} \\Q_{6}\end{array}\right]_{2-3} = \left(\frac{EA}{L}\right)\left[\begin{array}{@{}cccccc@{}}0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & a & -a & -a & a \\0 & 0 & -a & a & a & -a \\0 & 0 & -a & a & a & -a \\0 & 0 & a & -a & -a & a\end{array}\right]\left[\begin{array}{@{}l@{}}q_{1} \\q_{2} \\q_{3} \\q_{4} \\q_{5} \\q_{6}\end{array}\right]-\left[\begin{array}{@{}c@{}}0 \\0 \\1 / \sqrt{2} \\-1 / \sqrt{2} \\-1 / \sqrt{2} \\1 / \sqrt{2}\end{array}\right]\left(N_{T}\right)_{2-3}.\end{aligned}}
\label{eq16.1e}\tag{e}
\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{3} \\Q_{4} \\Q_{5} \\Q_{6}\end{array}\right]=\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{3} \\Q_{4} \\Q_{5} \\Q_{6}\end{array}\right]_{1-2}+\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{3} \\Q_{4} \\Q_{5} \\Q_{6}\end{array}\right]_{1-3}+\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{3} \\Q_{4} \\Q_{5} \\Q_{6}\end{array}\right]_{2-3}.\end{aligned}}
\label{eq16.1f}\tag{f}
\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{3} \\Q_{4} \\Q_{5} \\Q_{6}\end{array}\right]=\frac{E A}{L}\left[\begin{array}{@{}cccccc@{}}1 & 0 & -1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 & 0 & -1 \\-1 & 0 & 1+a & -a & -a & a \\0 & 0 & -a & a & a & -a \\0 & 0 & -a & a & a & -a \\0 & -1 & a & -a & -a & 1+a\end{array}\right]\left[\begin{array}{@{}l@{}}q_{1} \\q_{2} \\q_{3} \\q_{4} \\q_{5} \\q_{6}\end{array}\right]+\left[\begin{array}{@{}c@{}}\left(N_{T}\right)_{1-2} \\\left(N_{T}\right)_{1-3} \\-\left(N_{T}\right)_{1-2}-\left(N_{T}\right)_{2-3} / \sqrt{2} \\\left(N_{T}\right)_{2-3} / \sqrt{2} \\\left(N_{T}\right)_{2-3} / \sqrt{2} \\-\left(N_{T}\right)_{1-3}-\left(N_{T}\right)_{2-3} / \sqrt{2}\end{array}\right].\end{aligned}}
\label{eq16.1g}\tag{g}
\{Q\}=[K]\{q\}+\left\{Q^{0}\right\},\end{aligned}}
\label{eq16.1h}\tag{h}
[K]=\left(\frac{E A}{L}\right)
\begin{array}{@{}c@{}}
{\arraycolsep=7.5pt\begin{array}{@{}cccccc@{}}
q_{1} & q_{2} & q_{3} & q_{4} & q_{5} & q_{6}\end{array}}\\[6pt]
\left[\begin{array}{@{}cccccc@{}}1 & 0 & -1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 & 0 & -1 \\-1 & 0 & 1+a & -a & -a & a \\0 & 0 & -a & a & a & -a \\0 & 0 & -a & a & a & -a \\0 & -1 & a & -a & -a & 1+a\end{array}\right]\end{array},\end{aligned}}
\label{eq16.1i}\tag{i}
\left\{Q^{0}\right\}=\left[\begin{array}{@{}c@{}}\left(N_{T}\right)_{1-2} \\\left(N_{T}\right)_{1-3} \\-\left(N_{T}\right)_{1-2}-\left(N_{T}\right)_{2-3} / \sqrt{2} \\\left(N_{T}\right)_{2-3} / \sqrt{2} \\\left(N_{T}\right)_{2-3} / \sqrt{2} \\-\left(N_{T}\right)_{1-3}-\left(N_{T}\right)_{2-3} / \sqrt{2}\end{array}\right].\end{aligned}}
Assembly algorithm
Consider again the three-bar truss in example [ex16.1] on page . For computer implementation an algorithm is presented to assemble the 6X6 unrestrained structural stiffness matrix from the three 4X4 truss stiffness matrices, and to assemble the 6X1 fixed-end vector from the three 4X1 fixed-end action vectors. Let a truss member be denoted by m, where m=1 for bar 1-2, m=2 for bar 1-3, and m=3 for bar 2-3. A description of symbols used in the of assembly algorithm is given in table [tab16.2].
Define the 3X1 “spring” stiffness vector [Kt] and the 3X1 thermal force vector [NT] by [Kt]=[EALEALEA√2L]T[NT]=[(NT)1−2(NT)1−3(NT)2−3]T.
\label{eq16.18}
&\hspace*{2.5pc}q_{2 i-1} \hspace*{1.2pc} q_{2 i} \hspace*{1.2pc} q_{2 j-1} \hspace*{1.2pc} q_{2 j} \nonumber\\
&[C]=
%\begin{array}{@{}c@{}}
%{%\arraycolsep=5pt
%\hskip-65pt\begin{array}{@{\hspace*{-9pt}}ccc@{\hspace*{14pt}}c@{}}
%q_{2 i-1} & q_{2 i} & q_{2 j-1} & q_{2 j}\end{array}}\\[6pt]
{\arraycolsep=13.5pt\left[\begin{array}{@{\hspace*{6pt}}cccc@{\hspace*{6pt}}}
%q_{2 i-1} & q_{2 i} & q_{2 j-1} & q_{2 j} \\
1 & 2 & 3 & 4 \\
1 & 2 & 5 & 6 \\
3 & 4 & 5 & 6\end{array}\right]} \quad \begin{array}{l}\text {member 1 } \\\text {member 2}\ . \\\text {member 3 }\end{array}
%\end{array}\end{aligned}}
Row one of matrix [C] is assigned to member 1 (bar 1-2), row two to member 2 (bar 1-3), and row three to member 3 (bar 2-3).
Column one contains the DOF for horizontal displacement q2i−1 at the beginning joint i of the member,
column two contains the DOF for the vertical displacement q2i of the beginning joint i of the member,
column three contains the DOF of the horizontal displacement q2j−1 at the end joint j of the member,
and column four contains the DOF for the vertical displacement q2j at the end joint j of the member.
Refer to the nomenclature in table [tab16.2], and to matrices defined in eqs. ([eq16.16]), ([eq16.17]), and ([eq16.18]), to understand the flow chart for the assembly algorithm in figure [fig16.3].
[ex16.2]Consider the truss of example [ex16.1] supported in such a manner that joint displacements q1=q2=q4=q5=0 as is shown in figure [fig16.4]. The unknown displacements are q3 and q6, and take the corresponding joint forces Q3=Q6=0. The thermal forces in bars 1-2, 1-3, and 2-3 are specified as (NT)1−2=0, (NT)1−3≠0, and (NT)2−3=0, respectively.
Determine the restrained structural stiffness matrix [Kαα], and submatrices [Kαβ], [Kβα], and [Kββ].
Determine the unknown joint displacements q3, and q6.
Determine the unknown support reactions Q1,Q2,Q4, and Q5.
Determine the bar forces N1−2,N1−3, and N2−3.
Solution to part (a).
Rearrange the unrestrained stiffness matrix in eq. ([eq16.1h]) of example [ex16.1] so that the order of the rows and columns correspond to degrees of freedom 3, 6, 1, 2, 4, and 5. \boldsymbol{\begin{aligned}
\label{eq16.2a}\tag{a}
[K]=\left(\frac{E A}{L}\right)
\begin{array}{@{}c@{}}
{\arraycolsep=7.5pt\begin{array}{@{}cccccc@{}}
q_3 & q_6 & q_1 & q_2 & q_4 & q_5
\end{array}}\\[6pt]
\left[\begin{array}{cc;{2pt/2pt}cccc}
1+a & a & -1 & 0 & -a & -a \\
a & 1+a & 0 & -1 & -a & -a \\\hdashline[2pt/2pt]
-1 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 \\ -a & -a & 0 & 0 & a & a \\ -a & -a & 0 & 0 & a & a\end{array}\right]\end{array}.\end{aligned}}
\label{eq16.2b}\tag{b}
\left[K_{\alpha \alpha}\right]=\left(\frac{E A}{L}\right)\left[\begin{array}{@{}cc@{}}1+a & a \\a & 1+a\end{array}\right] \quad\left[K_{\alpha \beta}\right]=\left(\frac{E A}{L}\right)\left[\begin{array}{@{}cccc@{}}-1 & 0 & -a & -a \\0 & -1 & -a & -a\end{array}\right],\end{aligned}}
\label{eq16.2c}\tag{c}
\left[K_{\beta \alpha}\right]=\left(\frac{E A}{L}\right)\left[\begin{array}{@{}cc@{}}-1 & 0 \\0 & -1 \\-a & -a \\-a & -a\end{array}\right] \quad\left[K_{\beta \beta}\right]=\left(\frac{E A}{L}\right)\left[\begin{array}{@{}llll@{}}1 & 0 & 0 & 0 \\0 & 1 & 0 & 0 \\0 & 0 & a & a \\0 & 0 & a & a\end{array}\right].\end{aligned}}
\label{eq16.2d}\tag{d}
[K]=\left(\frac{E A}{L}\right)
\begin{array}{@{}c@{}}
{\arraycolsep=7.5pt\begin{array}{@{}cccccc@{}}
q_1 & q_2 & q_3 & q_4 & q_5 & q_6
\end{array}}\\[6pt]
\left[\begin{array}{@{}cccccc@{}} \multirow{6}{2pt}{\hspace*{3pt}\rule{0.5pt}{76pt}}\hspace*{-1pt}1 & \multirow{6}{2pt}{\hspace*{3pt}\rule{0.5pt}{76pt}}\hspace*{-1pt}0 & -1 & \multirow{6}{2pt}{\hspace*{3pt}\rule{0.5pt}{76pt}}\hspace*{-1pt}0 & \multirow{6}{2pt}{\hspace*{3pt}\rule{0.5pt}{76pt}}\hspace*{-1pt}0 & 0 \\[-7pt]
\hline\\[-4pt] 0 & 1 & 0 & 0 & 0 & -1 \\[-7pt]
\hline\\[-4pt] -1 & 0 & 1+a & -a & -a & a \\
0 & 0 & -a & a & a & -a \\[-7pt]
\hline\\[-4pt]
0 & 0 & -a & a & a & -a \\[-7pt]
\hline\\[-4pt] 0 & -1 & a & -a & -a & 1+a\end{array}\right]\end{array}.\end{aligned}}
\label{eq16.2e}\tag{e}
\left\{Q^{0}\right\}=\left[\begin{array}{@{}llllll@{}}0 & \left(N_{T}\right)_{1-3} & 0 & 0 & 0 & -\left(N_{T}\right)_{1-3}\end{array}\right]^{T}.\end{aligned}}
\label{eq16.2f}\tag{f}
\left\{Q_{\alpha}^{0}\right\}=\left[\begin{array}{@{}c@{}}0 \\-\left(N_{T}\right)_{1-3}\end{array}\right] \quad\left\{Q_{\beta}^{0}\right\}=\left[\begin{array}{@{}c@{}}0 \\\left(N_{T}\right)_{1-3} \\0 \\0\end{array}\right].\end{aligned}}
Solution to part (b).
Equation ([eq15.31]) on page with the addition of the fixed-end action vector is \boldsymbol{\begin{aligned}
\label{eq16.2g}\tag{g}
\left\{Q_{\alpha}\right\}=\left[K_{\alpha \alpha}\right]\left\{q_{\alpha}\right\}+\left[K_{\alpha \beta}\right]\left\{q_{\beta}\right\}+\left\{Q_{\alpha}^{0}\right\}.\end{aligned}}
\label{eq16.2h}\tag{h}
\left\{Q_{\alpha}\right\}+\underbrace{(-\{Q_{\alpha}^{0}\})}_{\hspace*{-11pc}\mbox{equivalent joint force vector---}}=\left[K_{\alpha \alpha}\right]\left\{q_{\alpha}\right\}+\left[K_{\alpha \beta}\right]\left\{q_{\beta}\right\}.\end{aligned}}
\label{eq16.2i}\tag{i}
\left\{q_{\alpha}\right\}=\left[K_{\alpha \alpha}\right]^{-1}\left\{-Q_{\alpha}^{0}\right\}\mbox{, where the inverse matrix is }\left[K_{\alpha \alpha}\right]^{-1}=\left(a d j\left[K_{\alpha \alpha}\right]\right) /\left({det}\left[K_{\alpha \alpha}\right]\right).\end{aligned}}
\label{eq16.2j}\tag{j}
a d j\left[K_{\alpha \alpha}\right]=\left(\frac{E A}{L}\right)\left[\begin{array}{@{}cc@{}}1+a & -a \\-a & 1+a\end{array}\right] \quad {det}\left[K_{\alpha \alpha}\right]=\left(\frac{E A}{L}\right)^{2}\left((1+a)^{2}-a^{2}\right)=\left(\frac{E A}{L}\right)^{2}(1+2 a).\end{aligned}}
\label{eq16.2k}\tag{k}
\left[K_{\alpha \alpha}\right]^{-1}=\left(\frac{L}{E A}\right)\left(\frac{1}{1+2 a}\right)\left[\begin{array}{@{}cc@{}}1+a & -a \\-a & 1+a\end{array}\right].\end{aligned}}
\left(\frac{E A}{L}\right)&\left[\begin{array}{@{}cc@{}}1+a & a \\a & 1+a\end{array}\right]\left(\frac{L}{E A}\right)\left(\frac{1}{1+2 a}\right)\left[\begin{array}{@{}cc@{}}1+a & -a \\-a & 1+a\end{array}\right]=\left(\frac{1}{1+2 a}\right)\left[\begin{array}{@{}cc@{}}1+a & a \\a & 1+a\end{array}\right]\left[\begin{array}{@{}cc@{}}1+a & -a \\-a & 1+a\end{array}\right] \nonumber\\
&=\frac{1}{1+2 a}\left[\begin{array}{@{}cc@{}}(1+a)^{2}+\left(-a^{2}\right) &(1+a)(-a)+a(1+a) \\ a(1+a)+(1+a)(-a)&-a^{2}+(1+a)^2\end{array}\right]=\frac{1}{1+2 a}\left[\begin{array}{@{}cc@{}}1+2 a & 0 \\0 & 1+2 a\end{array}\right]=\left[\begin{array}{@{}cc@{}}1 & 0 \\0 & 1\end{array}\right].\label{eq16.2l}\tag{l}\end{aligned}}
\label{eq16.2m}\tag{m}
\left[\begin{array}{@{}l@{}}q_{3} \\q_{6}\end{array}\right]=\left(\frac{L}{E A}\right)\left[\begin{array}{@{}l@{}}\frac{-\sqrt{2}}{4+2 \sqrt{2}} \\[6pt]\frac{4+\sqrt{2}}{4+2 \sqrt{2}}\end{array}\right]\left(N_{T}\right)_{1-3}.\end{aligned}}
Solution to part (c).
The support reactions are determined from eq. ([eq15.32]) on page , which is repeated below as eq. ([eq16.2n]). \boldsymbol{\begin{aligned}
\label{eq16.2n}\tag{n}
\left\{Q_{\beta}\right\}=\left[K_{\beta \alpha}\right]\left\{q_{\alpha}\right\}+\left[K_{\beta \beta}\right]\left\{q_{\beta}\right\}+\left\{Q_{\beta}^{0}\right\}.\end{aligned}}
\label{eq16.2o}\tag{o}
\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{4} \\Q_{5}\end{array}\right]=\left(\frac{E A}{L}\right)\left[\begin{array}{@{}cc@{}}-1 & 0 \\0 & -1 \\-a & -a \\-a & -a\end{array}\right]\left[\begin{array}{@{}l@{}}q_{3} \\q_{6}\end{array}\right]+\left[\begin{array}{@{}c@{}}0 \\\left(N_{T}\right)_{1-3} \\0 \\0\end{array}\right].\end{aligned}}
\label{eq16.2p}\tag{p}
\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{4} \\Q_{5}\end{array}\right]=\left(\frac{E A}{L}\right)\left[\begin{array}{@{}cc@{}}
-1 & 0 \\0 & -1 \\-a & -a \\-a & -a\end{array}\right]\left(\frac{L}{E A}\right)\left[\begin{array}{@{}c@{}}\frac{-1}{2\,+\,2 \sqrt{2}} \\[6pt]\frac{4\,+\,\sqrt{2}}{4\,+\,2 \sqrt{2}}\end{array}\right]\left(N_{T}\right)_{1-3}+\left[\begin{array}{@{}c@{}}0 \\\left(N_{T}\right)_{1-3} \\0 \\0\end{array}\right].\end{aligned}}
\label{eq16.2q}\tag{q}
\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{4} \\Q_{5}\end{array}\right]=\left[\begin{array}{@{}c@{}}\frac{1}{2\,+\,2 \sqrt{2}} \\[6pt]\frac{1}{2\,+\,2 \sqrt{2}} \\[6pt]\frac{1}{2}-\frac{1}{\sqrt{2}} \\[6pt]\frac{1}{2}-\frac{1}{\sqrt{2}}\end{array}\right]\left(N_{T}\right)_{1-3}.\end{aligned}}
The condition for horizontal equilibrium is Q1+Q5=0. Substitute the results for these reactive forces from eq. ([eq16.2q]) into condition for horizontal equilibrium to get \boldsymbol{\begin{aligned}
\label{eq16.2r}\tag{r}
Q_{1}+Q_{5}=\left(\frac{1}{2+2 \sqrt{2}}+\frac{1}{2}-\frac{1}{\sqrt{2}}\right)\left(N_{T}\right)_{1-3}.\end{aligned}}
L132pt
Extract a common denominator in eq. ([eq16.2r]): \boldsymbol{\begin{aligned}
\label{eq16.2s}\tag{s}
Q_{1}+Q_{5}=\left(\frac{1}{2+2 \sqrt{2}}\right)\left[1+(1+\sqrt{2})-\frac{(2+2 \sqrt{2})}{\sqrt{2}}\right]\left(N_{T}\right)_{1-3}.\end{aligned}}
Q_{1}+Q_{5}&=\left(\frac{1}{2+2 \sqrt{2}}\right)[2+\sqrt{2}-(\sqrt{2}+2)]\left(N_{T}\right)_{1-3}=\left(\frac{1}{2+2 \sqrt{2}}\right)[0]\left(N_{T}\right)_{1-3} \nonumber\\
&=0. \label{eq16.2t}\tag{t}\end{aligned}}
\label{eq16.2u}\tag{u}
Q_{2}+Q_{4}=\left[\frac{1}{2+2 \sqrt{2}}+\frac{1}{2}-\frac{1}{\sqrt{2}}\right]\left(N_{T}\right)_{1-3}=0.\end{aligned}}
\label{eq16.2v}\tag{v}
L Q_{4}-L Q_{5}=L\left[\frac{1}{2}-\frac{1}{\sqrt{2}}-\left(\frac{1}{2}-\frac{1}{\sqrt{2}}\right)\right]\left(N_{T}\right)_{1-3}=0.\end{aligned}}
Solution to part (d).
The axial normal force in the bar between joints i and j from eq. ([eq16.14]) is \boldsymbol{\begin{aligned}
\label{eq16.2w}\tag{w}
N_{i-j}=\left[S_{i-j}\right]\{q\}_{i-j}-\left(N_{T}\right)_{i-j},\end{aligned}}
\label{eq16.2x}\tag{x}
\left[S_{i-j}\right] \equiv\left(\frac{E A}{L}\right)_{i-j}\left[\begin{array}{@{}l@{\;}l@{\;}l@{\;}l@{}}-c & -s & c & s\end{array}\right]_{i-j}.\end{aligned}}
For bar 1-2, the axial normal force is \boldsymbol{\begin{aligned}
\label{eq16.2y}\tag{y}
N_{1-2}=\left(\frac{E A}{L}\right)\left[\begin{array}{@{}l@{\;}l@{\;}l@{\;}l@{}}-1 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{@{}l@{}}q_{1} \\q_{2} \\q_{3} \\q_{4}\end{array}\right]-\left(N_{T}\right)_{1-2}=\left(\frac{E A}{L}\right)\left[\begin{array}{@{}l@{\;}l@{\;}l@{\;}l@{}}-1 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{@{}c@{}}0 \\0 \\q_{3} \\0\end{array}\right]-0=\left(\frac{E A}{L}\right) q_{3}.\end{aligned}}
\label{eq16.2z}\tag{z}
N_{1-3}=\left(\frac{E A}{L}\right)\left[\begin{array}{@{}l@{\;}l@{\;}l@{\;}l@{}}0 & -1 & 0 & 1\end{array}\right]\left[\begin{array}{@{}c@{}}0 \\0 \\0 \\q_{6}\end{array}\right]-\left(N_{T}\right)_{1-3}=\left(\frac{E A}{L}\right) q_{6}-\left(N_{T}\right)_{1-3}.\end{aligned}}
\label{eq16.2aa}\tag{aa}
N_{1-3}=\left(\frac{E A}{L}\right)\left[\left(\frac{L}{E A}\right) \frac{4+\sqrt{2}}{4+2 \sqrt{2}}\left(N_{T}\right)_{1-3}\right]-\left(N_{T}\right)_{1-3}=\left(\frac{-1}{2+2 \sqrt{2}}\right)\left(N_{T}\right)_{1-3}.\end{aligned}}
\label{eq16.2ab}\tag{ab}
N_{2-3}=\left(\frac{E A}{\sqrt{2} L}\right)\left[\begin{array}{@{}lll@{}}1 / \sqrt{2}-1 / \sqrt{2}-1 / \sqrt{2}\ 1\; /\; \sqrt{2}\end{array}\hspace*{-3pt}\right]\left[\begin{array}{@{}l@{}}q_{3} \\
q_{4} \\q_{5} \\q_{6}\end{array}\right]-\left(N_{T}\right)_{2-3}=\left(\frac{E A}{\sqrt{2} L}\right)\left[\begin{array}{@{}lll@{}}1 / \sqrt{2}-1 / \sqrt{2}-1 / \sqrt{2}\ 1 / \sqrt{2}\end{array}\hspace*{-3pt}\right]\left[\begin{array}{@{}c@{}}q_{3} \\0 \\0 \\q_{6}\end{array}\right]-0.\end{aligned}}
N_{2-3}&=\left(\frac{E A}{2 L}\right)\left[\begin{array}{@{}l@{\;}l@{}}1 & 1\end{array}\right]\left[\begin{array}{@{}l@{}}q_{3} \\q_{6}\end{array}\right]-\left(N_{T}\right)_{2-3}=\frac{E A}{2 L}\left(q_{3}+q_{6}\right)-0 \nonumber\\
&=\frac{E A}{2 L}\left[\left(\frac{L}{E A}\right)\left(\frac{-\sqrt{2}}{4+2 \sqrt{2}}\right)\left(N_{T}\right)_{1-3}+\left(\frac{L}{E A}\right) \frac{4+\sqrt{2}}{4+2 \sqrt{2}}\left(N_{T}\right)_{1-3}\right] \nonumber\\
&=\left(\frac{1}{2}\right)\left[\frac{-\sqrt{2}}{4+2 \sqrt{2}}+\frac{4+\sqrt{2}}{4+2 \sqrt{2}}\right]\left(N_{T}\right)_{1-3}=\left(\frac{1}{2}\right)\left[\frac{4}{4+2 \sqrt{2}}\right]\left(N_{T}\right)_{1-3}.\label{eq16.2ac}\tag{ac}\end{aligned}}
\label{eq16.2ad}\tag{ad}
N_{2-3}=\frac{\left(N_{T}\right)_{1-3}}{2+\sqrt{2}}.\end{aligned}}
Self-strained truss
Strain of the bars in a truss can occur due to temperature changes and also due to the lack of fit during assembly, even in the absence of applied nodal forces. The analysis for lack of fit of bar 1-3 in example [ex16.2] is achieved by replacing the thermal force by (NT)1−3→EA(¯Δ/L)1−3,
[ex16.3]Now consider a statically determinate configuration of the truss in figure [fig16.2], which is shown in figure [fig16.6]. Support conditions impose displacements q2=q4=q5=0. The applied external forces are specified as Q1=Q3=Q6=0, and only bar 1-3 is subject to a thermal force (NT)1−3=EA(αΔT).
Determine the unknown joint displacements.
Determine the unknown joint forces.
Determine the elongation of each bar.
Solution to part (a).
The matrix equation to determine the unknown joint displacements is \boldsymbol{\begin{aligned}
\label{eq16.3a}\tag{a}
\left\{Q_{\alpha}\right\}=\left[K_{\alpha \alpha}\right]\left\{q_{\alpha}\right\}+\left[K_{\alpha \beta}\right]\left\{q_{\beta}\right\}+\left\{Q_{\alpha}^{0}\right\}.\end{aligned}}
\left\{Q_{\alpha}\right\}=\left[\begin{array}{@{}c@{}}Q_{1} \\Q_{3} \\Q_{6}\end{array}\right]=\left[\begin{array}{@{}l@{}}0 \\0 \\0\end{array}\right], \left[K_{\alpha \alpha}\right]=\frac{E A}{L}\left[\begin{array}{@{}ccc@{}}1 & -1 & 0 \\-1 & 1+a & a \\0 & a & 1+a\end{array}\right], \left\{q_{\alpha}\right\}=\left[\begin{array}{@{}l@{}}q_{1} \\q_{3} \\q_{6}\end{array}\right], \left[K_{\alpha \beta}\right]=\frac{E A}{L}\left[\begin{array}{@{}ccc@{}}0 & 0 & 0 \\0 & -a & -a \\-1 & -a & -a\end{array}\right],\label{eq16.3b}\tag{b}\\
\left\{q_{\beta}\right\}=\left[\begin{array}{@{}l@{}}q_{2} \\q_{4} \\q_{5}\end{array}\right]=\left[\begin{array}{@{}l@{}}0 \\0 \\0\end{array}\right]\mbox{, and }\left\{Q_{\alpha}^{0}\right\}=\left[\begin{array}{r}Q_{1}^{0} \\[6pt] Q_{3}^{0} \\[6pt] Q_{6}^{0}\end{array}\right]=\left[\begin{array}{@{}c@{}}0 \\0 \\-\left(N_{T}\right)_{1-3}\end{array}\right].\label{eq16.3c}\tag{c}\end{gathered}}
\label{eq16.3d}\tag{d}
q_{1}=-L(\alpha \Delta T) \quad q_{3}=-L(\alpha \Delta T) \quad q_{6}=L(\alpha \Delta T).\end{aligned}}
Solution to part (b).
The matrix equation to determine the unknown joint forces is \boldsymbol{\begin{aligned}
\label{eq16.3e}\tag{e}
\left\{Q_{\beta}\right\}=\left[K_{\beta \alpha}\right]\left\{q_{\alpha}\right\}+\left[K_{\beta \beta}\right]\left\{q_{\beta}\right\}+\left\{Q_{\beta}^{0}\right\}.\end{aligned}}
The matrices in eq. ([eq16.3e]) are \boldsymbol{\begin{aligned}
\label{eq16.3f}\tag{f}
\left\{Q_{\beta}\right\}=\left[\begin{array}{@{}c@{}}Q_{2} \\Q_{4} \\Q_{5}\end{array}\right], \left[K_{\beta \alpha}\right]=\frac{E A}{L}\left[\begin{array}{@{}ccc@{}}0 & 0 & -1 \\0 & -a & -a \\0 & -a & -a\end{array}\right], \left[K_{\beta \beta}\right]=\frac{E A}{L}\left[\begin{array}{@{}lll@{}}1 & 0 & 0 \\0 & a & a \\0 & a & a\end{array}\right]\mbox{, and }\left\{Q_{\beta}^{0}\right\}=\left[\begin{array}{@{}l@{}}Q_{2}^{0} \\[6pt] Q_{4}^{0} \\[6pt] Q_{5}^{0}\end{array}\right]=\left[\begin{array}{@{}c@{}}\left(N_{T}\right)_{1-3} \\0 \\0\end{array}\right].\end{aligned}}
\label{eq16.3g}\tag{g}
Q_{2}=Q_{4}=Q_{5}=0.\end{aligned}}
\label{eq16.3h}\tag{h}
N_{1-2}=N_{1-3}=N_{2-3}=0,\end{aligned}}
Solution to part (c).
The elongation of a truss is determined from eq. ([eq16.4]). Using the direction cosines listed in table [tab16.1], the elongation of each bar is given by \boldsymbol{\begin{aligned}
\label{eq16.3i}\tag{i}
\begin{split}
\Delta_{1-2}&=(1)\left(q_{3}-q_{1}\right)+(0)\left(q_{4}-q_{2}\right)=0 \\
\Delta_{1-3}&=(0)\left(q_{5}-q_{1}\right)+(1)\left(q_{6}-q_{2}\right)=L(\alpha \Delta T) \\
\Delta_{2-3}&=\left(\frac{-1}{\sqrt{2}}\right)\left(q_{5}-q_{3}\right)+\left(\frac{1}{\sqrt{2}}\right)\left(q_{6}-q_{4}\right)=\left(\frac{1}{\sqrt{2}}\right)\left(q_{6}+q_{3}\right)=0
\end{split}.\end{aligned}}
[ex16.4]The five-bar truss shown in figure [fig16.8] is restrained against rigid body motion, since joints 1 and 4 are fixed. pins All bars have the same extensional stiffness EA. Determine the restrained structural stiffness matrix [Kαα].
Solution.
The dimensions of the restrained structural stiffness matrix is 4X4 in displacement degrees of freedom q3,q4,q5, and q6. The direction cosines for the truss bars are listed in table [tab16.3].
From eq. ([eq16.12]) the following member stiffness matrices are constructed using the direction cosines in table [tab16.3]. Only elements contributing to rows and columns 3, 4, 5, and 6 of the restrained structural stiffness matrix are extracted from the individual element stiffness matrices. These member stiffness matrices follow: \boldsymbol{\begin{gathered}
\label{eq16.4a}\tag{a}
\left[K_{\alpha \alpha}\right]_{1-2}=\!\begin{array}{@{}c@{}}
\begin{array}{@{}ccc@{}}\phantom{0.}q_{3}& &q_{4}\phantom{0} \end{array}\\[6pt]\left[\begin{array}{@{}cr@{}}E A / L & 0 \\0 & 0\end{array}\right]\end{array}
\quad\left[K_{\alpha \alpha}\right]_{1-3}=\frac{E A}{L /(\cos \alpha)}\begin{array}{@{}c@{}}
{\arraycolsep=5pt\begin{array}{@{}cc@{}}q_{5}\phantom{0000} & \phantom{0000}q_{6} \end{array}}\\[6pt]\left[\begin{array}{@{}cc@{}}\cos ^{2} \alpha & \cos \alpha \sin \alpha \\\cos \alpha \sin \alpha & \sin ^{2} \alpha\end{array}\right]\end{array}=\frac{E A}{L}\begin{array}{@{}c@{}}{\arraycolsep=5pt\begin{array}{@{}cc@{}}
q_{5}\phantom{0000} & \phantom{0000}q_{6} \end{array}}\\[6pt]\left[\begin{array}{@{}ll@{}}\cos ^{3} \alpha & \cos ^{2} \alpha \sin \alpha \\\cos ^{2} \alpha \sin \alpha & \cos ^{2} \sin ^{2} \alpha\end{array}\right]\end{array}\\
\left[K_{\alpha \alpha}\right]_{2-3}=\left(\frac{E A}{L \tan \alpha}\right)\left[\begin{array}{@{}cccc@{}}0 & 0 & 0 & 0 \\0 & 1 & 0 & -1 \\0 & 0 & 0 & 0 \\0 & -1 & 0 & 1\end{array}\right]=\left(\frac{E A}{L}\right)\begin{array}{@{}c@{}}{\arraycolsep=7.5pt\begin{array}{@{}cccc@{}}q_{3}\phantom{.} & q_{4}\phantom{0} & q_{5}\phantom{0} & q_{6}\phantom{00} \end{array}}\\[6pt]\left[\begin{array}{@{}cccc@{}}0 & 0 & 0 & 0 \\0 & \cot \alpha & 0 & -\cot \alpha \\0 & 0 & 0 & 0 \\0 & -\cot \alpha & 0 & \cot \alpha\end{array}\right]\end{array}\quad \left[K_{\alpha \alpha}\right]_{3-4}=\begin{array}{@{}c@{}}\begin{array}{@{}cc@{}}\phantom{0}q_{5} & \phantom{00}q_{6} \end{array}\\[6pt]\left[\begin{array}{@{}cc@{}}E A / L & 0 \\0 & 0\end{array}\right]\end{array}.\label{eq16.4b}\tag{b}\\
\left[K_{\alpha \alpha}\right]_{2-4}=\left(\frac{E A}{L /(\cos \alpha)}\right)\left[\begin{array}{@{}cc@{}}\cos ^{2} \alpha & -\cos \alpha \sin \alpha \\-\cos \alpha \sin \alpha & \sin ^{2} \alpha\end{array}\right]=\frac{E A}{L}\begin{array}{@{}c@{}}\begin{array}{@{}cc@{}}q_{3}\phantom{0000} & \phantom{0000}q_{4} \end{array}\\[6pt]\left[\begin{array}{@{}cc@{}}\cos ^{3} \alpha & -\cos ^{2} \alpha \sin \alpha \\-\cos ^{2} \alpha \sin \alpha & \cos \alpha \sin ^{2} \alpha\end{array}\right]\end{array}.\label{eq16.4c}\tag{c}\end{gathered}}
\label{eq16.4d}\tag{d}
\left[K_{\alpha \alpha}\right]=\left(\frac{E A}{L}\right)\begin{array}{@{}c@{}}{\begin{array}{@{\hspace*{-6pt}}c@{\qquad\qquad\qquad}c@{\qquad\qquad\qquad}c@{\qquad\qquad\qquad\;\;}c@{}}
\hspace*{-0.8pc}q_{3}\hspace*{6pt} &\hspace*{6pt} q_{4}&\hspace*{9pt} \!\!q_{5}\hspace*{-6pt} & \phantom{00}q_{6} \end{array}}\\[6pt]\left[\begin{array}{@{}cccc@{}}\left(1+\cos ^{3} \alpha\right) & -\cos ^{2} \alpha \sin \alpha & 0 & 0 \\-\cos ^{2} \alpha \sin \alpha & \left(\cot \alpha+\cos \alpha \sin ^{2} \alpha\right) & 0 & -\cot \alpha \\0 & 0 & \left(\cos ^{3} \alpha+1\right) & \cos ^{2} \alpha \sin \alpha \\0 & -\cot \alpha & \cos ^{2} \alpha \sin \alpha & \left(\cos \alpha \sin ^{2} \alpha+\cot \alpha\right)\end{array}\right]\end{array}.\end{aligned}}
\label{eq16.4e}\tag{e}
\left[K_{\alpha \alpha}\right]=\left(\frac{E A}{L}\right)\begin{array}{@{}c@{}}\begin{array}{@{}c@{\qquad\qquad}c@{\qquad\qquad\quad}c@{\qquad\qquad}c@{}}q_{3} & q_{4} & q_{5} & q_{6} \end{array}\\[3pt]\left[\begin{array}{@{}cccc@{}}1+(3 \sqrt{3}) / 8 & -3 / 8 & 0 & 0 \\-3 / 8 & \sqrt{3}(9 / 8) & 0 & -\sqrt{3} \\0 & 0 & 1+(3 \sqrt{3}) / 8 & 3 / 8 \\0 & -\sqrt{3} & 3 / 8 & \sqrt{3}(9 / 8)\end{array}\right]\end{array}. \\[-1.4pc] \nonumber {\hfill\qed\hspace*{-7.4pc}}\end{aligned}}
[ex16.5]Consider the five-bar truss problem of example [ex16.4] with α=30∘ that is subject to prescribed nodal forces Q3,Q4,Q5, and Q6. Use symmetry to reduce the problem size to solve for the unknown joint displacements.
Solution.
We note that the structure and boundary conditions are symmetric about a horizontal axis through the center of the truss. The joint displacements and corresponding forces can be decomposed into a symmetric and antisymmetric sets about this horizontal axis of symmetry as shown in figure [fig16.10]. The joint displacements and the corresponding forces are related to the symmetric and antisymmetric counterparts by \boldsymbol{\begin{aligned}
\label{eq16.5a}\tag{a}
\left[\begin{array}{@{}l@{}}q_{3} \\q_{4} \\q_{5} \\q_{6}\end{array}\right]=\left[\begin{array}{@{}c@{}}x_{a} \\-y_{a} \\x_{a} \\y_{a}\end{array}\right]+\left[\begin{array}{@{}c@{}}-x_{b} \\y_{b} \\x_{b} \\y_{b}\end{array}\right]=\left[\begin{array}{@{}cccc@{}}1 & 0 & -1 & 0 \\0 & -1 & 0 & 1 \\1 & 0 & 1 & 0 \\0 & 1 & 0 & 1\end{array}\right]\left[\begin{array}{@{}l@{}}x_{a} \\y_{a} \\x_{b} \\y_{b}\end{array}\right]\mbox{, and }\left[\begin{array}{@{}c@{}}Q_{3} \\Q_{4} \\Q_{5} \\Q_{6}\end{array}\right]=\left[\begin{array}{@{}c@{}}X_{a} \\-Y_{a} \\X_{a} \\Y_{a}\end{array}\right]+\left[\begin{array}{@{}c@{}}-X_{b} \\Y_{b} \\X_{b} \\Y_{b}\end{array}\right]=\left[\begin{array}{@{}cccc@{}}1 & 0 & -1 & 0 \\0 & -1 & 0 & 1 \\1 & 0 & 1 & 0 \\0 & 1 & 0 & 1\end{array}\right]\left[\begin{array}{@{}c@{}}X_{a} \\Y_{a} \\X_{b} \\Y_{b}\end{array}\right].\end{aligned}}
The expressions in eq. ([eq16.5a]) are written in compact form as \boldsymbol{\begin{aligned}
\label{eq16.5b}\tag{b}
\left\{q_{\alpha}\right\}=[A]\{x\}\mbox{, and }\left\{Q_{\alpha}\right\}=[A]\{X\},\end{aligned}}
where the elements of the 4X4 matrix [A] are either –1, 0, or 1.The force vector is related to the displacement vector by {Qα}=[Kαα]{qα}, where matrix [Kαα] is given by eq. ([eq16.5e]) in example [ex16.4]. Substitute eq. ([eq16.5b]) into the matrix equation relating the force vector to the displacement vector to get \boldsymbol{\begin{aligned}
\label{eq16.5c}\tag{c}
[A]\{X\}=\left[K_{\alpha \alpha}\right][A]\{x\}.\end{aligned}}
\label{eq16.5d}\tag{d}
\{X\}=[A]^{-1}\left[K_{\alpha \alpha}\right][A]\{x\}.\end{aligned}}
\label{eq16.5e}\tag{e}
\left[\bar{K}_{\alpha \alpha}\right]=\frac{1}{2}\left[\begin{array}{@{}cccc@{}}1 & 0 & 1 & 0 \\0 & -1 & 0 & 1 \\-1 & 0 & 1 & 0 \\0 & 1 & 0 & 1\end{array}\right]\left(\frac{E A}{L}\right)\left[\begin{array}{ccccc}1+(3 \sqrt{3}) / 8 & -3 / 8 & 0 & 0 \\-3 / 8 & \sqrt{3}(9 / 8) & 0 & -\sqrt{3} \\0 & 0 & 1+(3 \sqrt{3}) / 8 & 3 / 8\\0 & -\sqrt{3} &3 / 8 & \sqrt{3}(9 / 8) \end{array}\right]
\left[\begin{array}{@{}cccc@{}}1 & 0 & -1 & 0 \\0 & -1 & 0 & 1 \\1 & 0 & 1 & 0 \\0 & 1 & 0 & 1\end{array}\right].\end{aligned}}
\label{eq16.5f}\tag{f}
\left[\bar{K}_{\alpha \alpha}\right]=\frac{E A}{L}\left|\begin{array}{@{}cccc@{}}1+(3 \sqrt{3}) / 8 & 3 / 8 & 0 & 0 \\3 / 8 & (17 \sqrt{3}) / 8 & 0 & 0 \\0 & 0 & 1+(3 \sqrt{3}) / 8 & 3 / 8 \\0 & 0 & 3 / 8 & (\sqrt{3}) / 8\end{array}\right|=\left[\begin{array}{@{}c@{}}{\left[\bar{K}_{a}\right]\left[\begin{array}{@{}c@{}}0_{2 X 2}\end{array}\right]} \\[6pt]\left.\left[0_{2 X 2}\right]\left[\bar{K}_{b}\right]\right]\end{array}\right].\end{aligned}}
\label{eq16.5g}\tag{g}
\left[\bar{K}_{a}\right]=\frac{E A}{L}\left[\begin{array}{@{}cc@{}}1+\frac{3 \sqrt{3}}{8} & \frac{3}{8} \\[6pt]\frac{3}{8} & \frac{17 \sqrt{3}}{8}\end{array}\right]\mbox{, and }\left[\bar{K}_{b}\right]=\frac{E A}{L}\left[\begin{array}{@{}cc@{}}1+\frac{3 \sqrt{3}}{8} & \frac{3}{8} \\[6pt]\frac{3}{8} & \frac{\sqrt{3}}{8}\end{array}\right].\end{aligned}}
\label{eq16.5h}\tag{h}
\left[\bar{K}_{a}\right]^{-1}=\frac{L}{E A} \left[\begin{array}{@{}l@{}}\frac{17}{181}(17-6 \sqrt{3}) \frac{1}{181}(18-17 \sqrt{3}) \\[6pt]\frac{1}{181}(18-17 \sqrt{3}) \frac{1}{543}(9+82 \sqrt{3})\end{array}\right]\mbox{, and }\left[\bar{K}_{b}\right]^{-1}=\frac{L}{E A}\left[\begin{array}{@{}cc@{}}1 & -\sqrt{3} \\-\sqrt{3} & (3+8 / \sqrt{3})\end{array}\right].\end{aligned}}
\label{eq16.5i}\tag{i}
\left[\bar{K}_{\alpha \alpha}\right]^{-1}=\left[\begin{array}{@{}l@{}}{\left[\bar{K}_{a}\right]^{-1}\left[\begin{array}{@{}l@{}}0_{2 X 2}\end{array}\right]} \\[6pt]{\left[0_{2 X 2}\right]\left[\bar{K}_{b}\right]^{-1}}\end{array}\right].\end{aligned}}
\label{eq16.5j}\tag{j}
\{x\}=\left[\bar{K}_{\alpha \alpha}\right]^{-1}\{X\}.\end{aligned}}
\label{eq16.5k}\tag{k}
[A]^{-1}\left\{q_{\alpha}\right\}=\left[\bar{K}_{\alpha \alpha}\right]^{-1}[A]^{-1}\left\{Q_{\alpha}\right\}.\end{aligned}}
\label{eq16.5l}\tag{l}
\left\{q_{\alpha}\right\}=\left[C_{\alpha \alpha}\right]\left\{Q_{\alpha}\right\},\end{aligned}}
\label{eq16.5m}\tag{m}
\left[C_{\alpha \alpha}\right]=[A]\left[\bar{K}_{\alpha \alpha}\right]^{-1}[A]^{-1}=\frac{L}{E A}\left[\begin{array}{@{}cccc@{}}0.810306 & 0.897641 & -0.189694 & 0.83441 \\0.897641 & 3.94847 & -0.83441 & 3.67033 \\-0.189694 & -0.83441 & 0.810306 & -0.897641 \\0.83441 & 3.67033 & -0.897641 & 3.94847\end{array}\right].\end{aligned}}
Structures containing beam members
Consider a prismatic, homogeneous beam that is referenced to the Cartesian system x-y-z. The z-coordinate is the longitudinal axis, and the coordinates x and y define cross-sectional axes with the origin at the centroid. Assume at least one axis x and/or y is an axis of symmetry so that the product area moment Ixy=0. External loads are specified as a transverse distributed load fy(z) as shown in figure [fig3.8] on page , and we assume a change in temperature in the form ΔT(y,z)=τy(z)y(s). For this form of the prescribed change in temperature the thermal axial force NT=0 in eq. ([eq3.75]), and thermal bending moment MxT≠0 in eq. ([eq3.78]). The plane of loading fy(z) coincides with the locus of shear centers. Hence, the beam bends in the y-z plane. Assume the Euler-Bernoulli theory in which the transverse shears in eq. ([eq4.28]) on page equal zero. That is, ψy=dvdz+ϕx=0.
The solution to the governing boundary value problem is sought by the method of superposition. Let the lateral displacement be represented by the sum of displacements in the form v(z)=v0(z)+v1(z).
\label{eq16.27}
\begin{split}E I v_{0}{ }^{\prime \prime \prime \prime}=f_{y}(z)-E I \alpha \tau_{y}^{\prime \prime} \quad 0<z<L\hspace*{2pc} \\
v_{0}(0)=0 \quad-v_{0}^{\prime}(0)=0 \quad v_{0}(L)=0 \quad-v_{0}^{\prime}(L)=0
\end{split}.\end{gathered}}
Boundary value problem ([eq16.28]). Generalized displacements at the boundaries
The general solution for v1(z) satisfying the differential equation in boundary value problem ([eq16.28]) is a cubic polynomial in the longitudinal coordinate, which is written as v1(z)=c3z36+c2z22+c1z+c0,
The distributions of the shear force ([eq16.32]) and the bending moment ([eq16.30]) for the boundary value problem ([eq16.28]) are [V1y(z)M1x(z)]=EI[−v′′′1−v′′1]=EI[−η1′′′−η′′′2−η′′′3−η′′′4−η1′′−η′′2−η′′3−η′′4][q1q2q3q4].
It is symmetric, because the material is linear elastic and the displacements and rotations of the beam are assumed small.
The column elements satisfy equilibrium for each unit displacement state.
For example consider unit displacement state one with {q}=[1000]T.
The corresponding generalized joint forces are {Q1}=[Q11Q12Q13Q14]T=EI[12L3−6L2−12L3−6L2]T(1).
The sum of the vertical forces is Q11+Q13=EI[12L3+(−12L3)](1)=0.
The sum of moments about the center of the beam clockwise positive are: L2Q11+Q12−L2Q13+Q14=EI[L2(12L3)+(−6L2)−L2(−12L3)+−6L2](1)=0.
As result of the four unit displacement states the elements of the beam stiffness matrix satisfy the following relationships.
The sum of rows one and three equals zero. 4∑j=1k1j+k3j=0.
The sum of L/2 times row one plus row two minus L/2 times row three plus row four is equal to zero. 4∑j=1(L/2)k1j+k2j−(L/2)k3j+k4j=0.
Since the stiffness matrix is symmetric, the column elements satisfy the same relationships as do the row elements
Det[K]=0, since the beam member is not restrained against rigid body displacement.
Its diagonal elements are positive.
Boundary value problem ([eq16.27]). Fixed-end actions
The fixed-end action vector is computed from the boundary value problem ([eq16.27]) to account for the distributed load and the temperature distribution in the direct stiffness method. Many practical problems can be analyzed with a linear distribution of the load intensity and a linear distribution of the cross-sectional temperature gradient. These linear distributions are specified as fy(z)=fy1(1−z/L)+ffy2(z/L) and τy(z)=τy1(1−z/L)+τy2(z/L).
In the case of uniform distributions where fy1=fy2=fy0 and τy1=τy2=τy0, the bending moment and shear force simplify to [V0yM0x]=[(L−2z)/2(−L2+6Lz−6z2)/12]fy0−EIα[01]τy0,
Results of the combined superposition solutions for the beam
Joint equilibrium ([eq16.25]) leads to the sum [Q1Q2Q3Q4]=[−V0y(0)−M0x(0)V0y(L)M0x(L)]+[−V1y(0)−M1x(0)V1y(L)M1x(L)]=[Q01Q02Q03Q04]+[Q11Q12Q13Q14],
To summarize, the analysis of a structure composed of beam members, with some members subject to distributed loads and temperature gradients, is as follows:
Lock every joint of the structure against translation and rotation, and calculate the fixed-end actions.
Apply the fixed-end actions with the opposite sign.
Analyze the structure with the specified joint forces and the negative of the fixed-end actions; {Q}+(−{Q0}). Note that the joint displacements computed in this step are the actual joint displacements.
Obtain the internal actions consisting of the shear force and bending moment by superposition. [Vy(z)Mx(z)]=[V0y(z)M0x(z)]+[V1y(z)M1x(z)]=[V0y(z)M0x(z)]+[S1(z)]{q}
For the linear distributions of the specified external loads, the shear force V0y(z) and bending moment M0x(z) are given by ([eq16.53]). The 2X4 stress matrix [S1(z)] is given by ([eq16.46]), and {q} is the 4X1 joint displacement vector of the beam member obtained from the solution of the assembly of the structural members.
[ex16.6]Consider the multispan uniform beam in figure [fig16.12]. It is subject to equal and opposite couples in the y-z plane at z=0 and z=L. The magnitude of the moment of these couples is denoted by Ma. The bending stiffness EI is the same constant in each span.
Determine the unknown joint displacements using symmetry to reduce problem size.
Draw the shear force and bending moment diagrams.
Determine the support reactions.
Solution for the unknown joint displacements.
The joints are taken at the support locations and are numbered one to five from left to right. Hence, there are ten degrees of freedom (DOFs) as is shown in the top sketch in figure 1.1. The support conditions mean the vertical displacements vanish; i.e., \boldsymbol{\begin{aligned}
\label{eq16.6a}\tag{a}
\left\{q_{\beta}\right\}=\left[\begin{array}{@{}l@{\;}l@{\;}l@{\;}l@{\;}l@{}}q_{1} & q_{3} & q_{5} & q_{7} & q_{9}\end{array}\right]^{T}=0_{5X1}.\end{aligned}}
\boldsymbol{\begin{aligned}
\label{eq16.6b}\tag{b}
q_{10}=-q_{2} \quad q_{8}=-q_{4} \quad q_{6}=-q_{6}.\end{aligned}}
\boldsymbol{\begin{aligned}
\label{eq16.6c}\tag{c}
\left[K_{1-2}\right]=E I
\begin{array}{@{}c@{}}
{\arraycolsep=13pt\begin{array}{@{}cccc@{}}
q_1 & q_2 & q_3 & q_4
\end{array}}\\[6pt]
\left[\begin{array}{@{}cccc@{}}12 / L^{3} & -6 / L^{2} & -12 / L^{3} & -6 / L^{2} \\-6 / L^{2} & 4 / L & 6 / L^{2} & 2 / L \\-12 / L^{3} & 6 / L^{2} & 12 / L^{3} & 6 / L^{2} \\
-6 / L^{2} & 2 / L & 6 / L^{2} & 4 / L\end{array}\right]
\end{array}
\left[K_{2-3}\right]=E I
\begin{array}{@{}c@{}}
{\arraycolsep=13pt\begin{array}{@{}cccc@{}}
q_3 & q_4 & q_5 & q_6
\end{array}}\\[6pt]
\left[\begin{array}{@{}cccc@{}}12 / L^{3} & -6 / L^{2} & -12 / L^{3} & -6 / L^{2} \\-6 / L^{2} & 4 / L & 6 / L^{2} & 2 / L \\-12 / L^{3} & 6 / L^{2} & 12 / L^{3} & 6 / L^{2} \\-6 / L^{2} & 2 / L & 6 / L^{2} & 4 / L\end{array}\right]
\end{array}.\end{aligned}}
\label{eq16.6d}\tag{d}
[K]=E I
\begin{array}{@{}c@{}}
{\arraycolsep=15pt\begin{array}{@{}cccccc@{}}
q_1 & q_2 & q_3 & q_4 & q_5 & q_6
\end{array}}\\[6pt]
\left[\begin{array}{@{}cccccc@{}}12 / L^{3} & -6 / L^{2} & -12 / L^{3} & -6 / L^{2} & 0 & 0 \\-6 / L^{2} & 4 / L & 6 / L^{2} & 2 / L & 0 & 0 \\-12 / L^{3} & 6 / L^{2} & 24 / L^{3} & 0 & -12 / L^{3} & -6 / L^{2} \\-6 / L^{2} & 2 / L & 0 & 8 / L & 6 / L^{2} & 2 / L \\0 & 0 & -12 / L^{3} & 6 / L^{2} & 12 / L^{3} & 6 / L^{2} \\0 & 0 & -6 / L^{2} & 2 / L & 6 / L^{2} & 4 / L\end{array}\right]
\end{array}.\end{aligned}}
\label{eq16.6e}\tag{e}
[K]=E I
\begin{array}{@{}c@{}}
{\arraycolsep=15pt\begin{array}{@{}cccccc@{}}
q_2 & q_4 & q_1 & q_3 & q_5 & q_6
\end{array}}\\[6pt]
\left[\begin{array}{cc:cccc}4 / L & 2 / L & -6 / L^{2} & 6 / L^{2} & 0 & 0 \\2 / L & 8 / L & -6 / L^{2} & 0 & 6 / L^{2} & 2 / L \\\hdashline-6 / L^{2} & -6 / L^{2} & 12 / L^{3} & -12 / L^{3} & 0 & 0 \\6 / L^{3} & 0 & -12 / L^{3} & 24 / L^{3} & -12 / L^{3} & -6 / L^{2} \\0 & 6 / L^{2} & 0 & -12 / L^{3} & 12 / L^{3} & 6 / L^{2} \\0 & 2 / L & 0 & -6 / L^{2} & 6 / L^{2} & 4 / L\end{array}\right]
\end{array}
=\left[\begin{array}{@{}l@{}}{\left[K_{\alpha \alpha}\right]\left[K_{\alpha \beta}\right]} \\{\left[K_{\beta \alpha}\right]\left[K_{\beta \beta}\right]}\end{array}\right].\end{aligned}}
\label{eq16.6f}\tag{f}
\left[K_{\alpha \alpha}\right]=E I
\begin{array}{@{}c@{}}
{\arraycolsep=12pt\begin{array}{@{}cc@{}}q_{2} &q_{4}\end{array}} \\[3pt]\left[\begin{array}{@{}cc@{}}4 / L & 2 / L \\2 / L & 8 / L\end{array}\right]\end{array}.\end{aligned}}
\label{eq16.6g}\tag{g}
\left[\begin{array}{@{}c@{}}Q_{2} \\Q_{4}\end{array}\right]=\left[\begin{array}{@{}c@{}}M_{a} \\0\end{array}\right]=E I\left[\begin{array}{@{}ll@{}}4 / L & 2 / L \\2 / L & 8 / L\end{array}\right]\left[\begin{array}{@{}l@{}}q_{2} \\q_{4}\end{array}\right].\end{aligned}}
\label{eq16.6h}\tag{h}
\left[\begin{array}{@{}l@{}}q_{2} \\q_{4}\end{array}\right]=\frac{L}{E I} \frac{1}{(32-4)}\left[\begin{array}{@{}cc@{}}8 & -2 \\-2 & 4\end{array}\right]\left[\begin{array}{@{}c@{}}M_{a} \\0\end{array}\right]=\frac{M_{a} L}{14 E I}\left[\begin{array}{@{}c@{}}4 \\-1\end{array}\right].\end{aligned}}
\label{eq16.6i}\tag{i}
\left[\begin{array}{@{}c@{}}q_{2} \\q_{4} \\q_{6} \\q_{8} \\q_{10}\end{array}\right]=\frac{M_{a} L}{14 E I}\left[\begin{array}{@{}c@{}}4 \\-1 \\0 \\1 \\-4\end{array}\right].\end{aligned}}
Solution for the shear force and bending moment distributions.
The shear force and bending moment distribution in beam members 1-2 and 2-3 are determined from eq. ([eq16.44]). For member 1-2, we have \boldsymbol{\begin{aligned}
\label{eq16.6j}\tag{j}
\left[\begin{array}{@{}l@{}}V_{1}(z) \\M_{1}(z)\end{array}\right]_{1-2}=E I\left[\begin{array}{@{}cccc@{}}-\frac{12}{L^{3}} & \frac{6}{L^{2}} & \frac{12}{L^{3}} & \frac{6}{L^{2}} \\\left(\frac{6}{L^{2}}-\frac{12 z}{L^{3}}\right) & \left(-\frac{4}{L}+\frac{6 z}{L^{2}}\right) & \left(-\frac{6}{L^{2}}+\frac{12 z}{L^{3}}\right) & \left(-\frac{2}{L}+\frac{6 z}{L^{2}}\right)\end{array}\right]\left[\begin{array}{@{}l@{}}q_{1} \\q_{2} \\q_{3} \\q_{4}\end{array}\right].\end{aligned}}
\label{eq16.6k}\tag{k}
\left[\begin{array}{@{}l@{}}V_{1}(z) \\M_{1}(z)\end{array}\right]_{1-2}=E I\left[\begin{array}{@{}cc@{}}\frac{6}{L^{2}} & \frac{6}{L^{2}} \\[6pt]\left(-\frac{4}{L}+\frac{6 z}{L^{2}}\right)&\left(-\frac{2}{L}+\frac{6 z}{L^{2}}\right)\end{array}\right]\left[\begin{array}{@{}l@{}}q_{2} \\q_{4}\end{array}\right].\end{aligned}}
\label{eq16.6l}\tag{l}
\left[\begin{array}{@{}l@{}}V_{1}(z) \\M_{1}(z)\end{array}\right]_{1-2}=E I\left[\begin{array}{@{}cc@{}}\frac{6}{L^{2}} & \frac{6}{L^{2}} \\\left(-\frac{4}{L}+\frac{6 z}{L^{2}}\right)&\left(-\frac{2}{L}+\frac{6 z}{L^{2}}\right)\end{array}\right] \frac{M_{a} L}{14 E I}\left[\begin{array}{@{}c@{}}4 \\-1\end{array}\right]=\frac{M_{a} L}{14}\left[\begin{array}{@{}c@{}}\frac{18}{L^{2}} \\-\frac{14}{L}+18 \frac{z}{L^{2}}\end{array}\right]=\left[\begin{array}{@{}c@{}}\frac{9 M_{a}}{7 L} \\-M_{a}+\frac{9 M_{a}}{7 L }z\end{array}\right].\end{aligned}}
\boldsymbol{\begin{aligned}
\label{eq16.6m}\tag{m}
\left[\begin{array}{@{}l@{}}V_{1}(z) \\M_{1}(z)\end{array}\right]_{2-3}=E I\left[\begin{array}{@{}cccc@{}}-\frac{12}{L^{3}} & \frac{6}{L^{2}} & \frac{12}{L^{3}} & \frac{6}{L^{2}} \\[6pt]\frac{6}{L^{2}}-\frac{12 z}{L^{3}} & -\frac{4}{L}+\frac{6 z}{L^{2}} & -\frac{6}{L^{2}}+\frac{12 z}{L^{3}} & -\frac{2}{L}+\frac{6 z}{L^{2}}\end{array}\right]\left[\begin{array}{@{}l@{}}q_{3} \\q_{4} \\q_{5} \\q_{6}\end{array}\right].\end{aligned}}
\label{eq16.6n}\tag{n}
\left[\begin{array}{@{}l@{}}V_{1}(z) \\M_{1}(z)\end{array}\right]_{2-3}=E I\left[\begin{array}{@{}c@{}}\frac{6}{L^{2}} \\[6pt]-\frac{4}{L}+\frac{6 z}{L^{2}}\end{array}\right] q_{4}.\end{aligned}}
\label{eq16.6o}\tag{o}
\left[\begin{array}{@{}l@{}}V_{1}(z) \\M_{1}(z)\end{array}\right]_{2-3}=E I\left[\begin{array}{@{}c@{}}\frac{6}{L^{2}} \\[6pt]-\frac{4}{L}+\frac{6 z}{L^{2}}\end{array}\right]\left(-\frac{M_{a} L}{14 E I}\right)=\left[\begin{array}{@{}c@{}}-\frac{3 M_{a}}{7 L} \\[6pt]\frac{2 M_{a}}{7}-\frac{3 M_{a}}{7 L} z\end{array}\right].\end{aligned}}
Solution for the support reactions.
The support reactions are [Qβ]=[Kβα]{qα}, since {qβ}=04X1. Hence, \boldsymbol{\begin{aligned}
\label{eq16.6p}\tag{p}
\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{3} \\Q_{5} \\O_{6}\end{array}\right]=E I\left[\begin{array}{@{}cc@{}}-6 / L^{2} & -6 / L^{2} \\6 / L^{2} & 0 \\0 & 6 / L^{2} \\0 & 2 / L\end{array}\right]\left[\begin{array}{@{}l@{}}q_{2} \\q_{4}\end{array}\right]=E I\left[\begin{array}{@{}cc@{}}-6 / L^{2} & -6 / L^{2} \\6 / L^{2} & 0 \\0 & 6 / L^{2} \\0 & 2 / L\end{array}\right] \frac{M_{a} L}{14 E I}\left[\begin{array}{@{}c@{}}4 \\-1\end{array}\right]=M_{a}\left[\begin{array}{@{}c@{}}-9 /(7 L) \\12 /(7 L) \\-3 /(7 L) \\-1 / 7\end{array}\right].\end{aligned}}
Joining the left half and right half we get the support reactions for the overall free body diagram of the multispan beam as shown in figure 1.3.
[ex16.7]The beam structure shown in figure [fig16.18](a) has a step change in thickness at midspan, and is clamped at each end. The left half of has a uniform flexural stiffness 2EI, and the right half has a uniform flexural stiffness EI. Each half has a length denoted by a. A vertical linear elastic spring of stiffness k=6EI/a3 is connected at midspan. The structure is subject to a vertical distributed load and a vertical point force P applied at midspan. The distributed load is uniform on the left half with intensity fy0, and decreases linearly from fy0 to zero on the right half. Model the response of the beam with two beam members, one in each half, and a spring member. Determine
The restrained structural stiffness matrix.
The fixed-end action vector.
The unknown joint displacements.
The support reactions.
The shear force and bending moment in the left half of the beam.
Solution to part (a).
The unrestrained structure has four joints and seven degrees of freedom as shown in figure [fig16.18](b). The size of the unrestrained structural stiffness matrix is 7X7. The support conditions impose the vanishing of the following generalized displacement vector: {qβ}=[q1q2q5q6q7]T=05X1. The active, or unknown, displacement vector is {qα}=[q3q4]T.
The stiffness matrices for the two beam members are obtained from eq. ([eq16.49]) as \boldsymbol{\begin{aligned}
\label{eq16.7a}\tag{a}
\left[K_{1-2}\right]=E I
\begin{array}{@{}c@{}}
{\arraycolsep=13pt\begin{array}{@{}cccc@{}}
q_1 & q_2 & q_3 & q_4
\end{array}}\\[6pt]
\left[\begin{array}{@{}cccc@{}}24 / a^{3} & -12 / a^{2} & -24 / a^{3} & -12 / a^{2} \\-12 / a^{2} & 8 / a & 12 / a^{2} & 4 / a \\-24 / a^{3} & 12 / a^{2} & 24 / a^{3} & 12 / a^{2} \\-12 / a^{2} & 4 / a & 12 / a^{2} & 8 / a\end{array}\right]
\end{array}
\left[K_{2-3}\right]=E I
\begin{array}{@{}c@{}}
{\arraycolsep=13pt\begin{array}{@{}cccc@{}}
q_3 & q_4 & q_5 & q_6
\end{array}}\\[6pt]
\left[\begin{array}{@{}cccc@{}}12 / a^{3} & -6 / a^{2} & -12 / a^{3} & -6 / a^{2} \\-6 / a^{2} & 4 / a & 6 / a^{2} & 2 / a \\-12 / a^{3} & 6 / a^{2} & 12 / a^{3} & 6 / a^{2} \\-6 / a^{2} & 2 / a & 6 / a^{2} & 4 / a\end{array}\right]
\end{array}.\end{aligned}}
\label{eq16.7b}\tag{b}
\left[K_{4-2}\right]=E I
\begin{array}{@{}c@{}}
{\arraycolsep=13pt\begin{array}{@{}cc@{}}
q_7 & q_3
\end{array}}\\[6pt]
\left[\begin{array}{@{}cc@{}}6 / a^{3} & -6 / a^{3} \\-6 / a^{3} & 6 / a^{3}\end{array}\right]
\end{array}.\end{aligned}}
\label{eq16.7c}\tag{c}
[K]=E I
\begin{array}{@{}c@{}}
{\arraycolsep=15pt\begin{array}{@{}ccccccc@{}}
q_1 & q_2 & q_3 & q_4 & q_5 & q_6 & q_7
\end{array}}\\[6pt]
\left[\begin{array}{@{}ccccccc@{}}24 / a^{3} & -12 / a^{2} & -24 / a^{3} & -12 / a^{2} & 0 & 0 & 0 \\-12 / a^{2} & 8 / a & 12 / a^{2} & 4 / a & 0 & 0 & 0 \\-24 / a^{3} & 12 / a^{2} & 42 / a^{3} & 6 / a^{2} & 12 / a^{3} & -6 / a^{2} & -6 / a^{3} \\-12 / a^{2} & 4 / a & 6 / a^{2} & 12 / a & 6 / a^{2} & 2 / a & 0 \\0 & 0 & -12 / a^{3} & 6 / a^{2} & 12 / a^{3} & 6 / a^{2} & 0 \\0 & 0 & -6 / a^{2} & 2 / a & 6 / a^{2} & 4 / a & 0 \\0 & 0 & -6 / a^{3} & 0 & 0 & 0 & 6 / a^{3}\end{array}\right]
\end{array}.\end{aligned}}
\label{eq16.7d}\tag{d}
[K]=E I
\begin{array}{@{}c@{}}
{\arraycolsep=16pt\begin{array}{@{}ccccccc@{}}
q_3 & q_4 & q_1 & q_2 & q_5 & q_6 & q_7
\end{array}}\\[6pt]
\left[\begin{array}{cc;{2pt/2pt}ccccc}42 / a^{3} & 6 / a^{2} & -24 / a^{3} & 12 / a^{2} & -12 / a^{3} & -6 / a^{2} & -6 / a^{3} \\6 / a^{2} & 12 / a & -12 / a^{2} & 4 / a & 6 / a^{2} & 2 / a & 0 \\\hdashline[2pt/2pt] -24/ a^{3} & -12 / a^{2} & 24 / a^{3} & -12 / a^{2} & 0 & 0 & 0 \\12 / a^{2} & 4 / a & -12 / a^{2} & 8 / a & 0 & 0 & 0 \\-12 / a^{3} & 6 / a^{2} & 0 & 0 & 12 / a^{3} & 6 / a^{2} & 0 \\-6 / a^{2} & 2 / a & 0 & 0 & 6 / a^{2} & 4 / a & 0 \\-6 / a^{3} & 0 & 0 & 0 & 0 & 0 & 6 / a^{3}\end{array}\right]
\end{array}
=\left[\begin{array}{@{}ll@{}}{\left[K_{\alpha \alpha}\right]} & {\left[K_{\alpha \beta}\right]} \\{\left[K_{\beta \alpha}\right]} & {\left[K_{\beta \beta}\right]}\end{array}\right].\end{aligned}}
\label{eq16.7e}\tag{e}
\left[K_{\alpha \alpha}\right]=E I\left[\begin{array}{@{}cc@{}}42 / a^{3} & 6 / a^{2} \\6 / a^{2} & 12 / a\end{array}\right].\end{aligned}}
Solution to part (b).
From eqs. ([eq16.54]) and ([eq16.56]) fixed-end actions of the beam member are \boldsymbol{\begin{aligned}
\label{eq16.7f}\tag{f}
\left[\begin{array}{@{}l@{}}Q_{1}^{0} \\[6pt]Q_{2}^{0} \\[6pt]Q_{3}^{0} \\[6pt]Q_{4}^{0}\end{array}\right]_{1-2}=\left[\begin{array}{@{}c@{}}-a f_{y 0} / 2 \\[3pt]a^{2} f_{y 0} / 12 \\[3pt]-a f_{y 0} / 2 \\[3pt]-a^{2} f_{y 0} / 12\end{array}\right]\left[\begin{array}{@{}l@{}}Q_{3}^{0} \\[6pt]Q_{4}^{0} \\[6pt]Q_{5}^{0} \\[6pt]Q_{6}^{0}\end{array}\right]_{2-3}=\left[\begin{array}{@{}c@{}}-7 a f_{y 0} / 20 \\[3pt]a^{2} f_{y 0} / 20 \\[3pt]-3 a f_{y 0} / 20 \\[3pt]-a^{2} f_{y 0} / 30\end{array}\right].\end{aligned}}
\label{eq16.7g}\tag{g}
\left\{Q_{\alpha}^{0}\right\}=\left[\frac{-17 a}{20} \frac{-a^{2}}{30}\right]^{T} f_{y 0} \quad\left\{Q_{\beta}^{0}\right\}=\left[\frac{-a}{2} \frac{a^{2}}{12} \frac{-3 a}{20} \frac{-a^{2}}{30} 0\right]^{T} f_{y 0}.\end{aligned}}
Solution to part (c).
The matrix equation to determine the unknown joint displacement {qα} is \boldsymbol{\begin{aligned}
\label{eq16.7h}\tag{h}
\left\{Q_{\alpha}\right\}=\left[K_{\alpha \alpha}\right]\left\{q_{\alpha}\right\}+\left[K_{\alpha \beta}\right]\left\{q_{\beta}\right\}+\left\{Q_{\alpha}^{0}\right\}.\end{aligned}}
\label{eq16.7i}\tag{i}
\left[\begin{array}{@{}c@{}}Q_{3} \\Q_{4}\end{array}\right]_{\alpha}=\left[\begin{array}{@{}l@{}}P \\0\end{array}\right].\end{aligned}}
\label{eq16.7j}\tag{j}
\left[K_{\alpha \alpha}\right]\left\{q_{\alpha}\right\}=\left\{Q_{\alpha}\right\}+(-\{Q_{\alpha}^{0}\}),\end{aligned}}
where (−{Q0α}) is the equivalent joint force vector. See figure [fig16.19]. The explicit form of the matrix equation to determine the unknown displacements is EI[42/a36/a26/a212/a][q3q4]=[P0]+[17a/20a2/30]fy0.
\label{eq16.7k}\tag{k}
\left[\begin{array}{@{}l@{}}q_{3} \\q_{4}\end{array}\right]=\frac{1}{E I}\left[\begin{array}{@{}cc@{}}a^{3} / 39 & -a^{2} / 78 \\-a^{2} / 78 & 7 a / 78\end{array}\right]\left[\begin{array}{@{}c@{}}P+17 a f_{y 0} / 20 \\a^{2} f_{y 0} / 30\end{array}\right]=\frac{1}{39 E I}\left[\begin{array}{@{}c@{}}
a^{3}\left(P+5 a f_{y 0} / 18\right) \\
\frac{-a^{2}}{2}\left(P+37 a f_{y 0} / 60\right)
\end{array}\right].\end{aligned}}
Solution to part (d).
The governing matrix equation for the unknown joint forces, or the support reactions, is \boldsymbol{\begin{aligned}
\label{eq16.7l}\tag{l}
\left\{Q_{\beta}\right\}=\left[K_{\beta \alpha}\right]\left\{q_{\alpha}\right\}+\left[K_{\beta \beta}\right]\left\{q_{\beta}\right\}+\left\{Q_{\beta}^{0}\right\}.\end{aligned}}
\label{eq16.7m}\tag{m}
\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{5} \\Q_{6} \\Q_{7}\end{array}\right]=E I\left[\begin{array}{@{}cc@{}}-24 / a^{3} & -12 / a^{2} \\12 / a^{2} & 4 / a \\-12 / a^{3} & 6 / a^{2} \\-6 / a^{2} & 2 / a \\-6 / a^{3} & 0\end{array}\right] \frac{1}{39 E I}\left[\begin{array}{@{}c@{}}a^{3} P+5 a f_{y 0} / 18 \\\frac{-a^{2}}{2} P+37 a f_{y 0} / 60\end{array}\right]+\left[\begin{array}{@{}c@{}}-a / 2 \\a^{2} / 12 \\-3 a / 20 \\-a^{2} / 30 \\0\end{array}\right] f_{y 0}.\end{aligned}}
\label{eq16.7n}\tag{n}
\left[\begin{array}{@{}l@{}}Q_{1} \\Q_{2} \\Q_{5} \\Q_{6} \\O_{7}\end{array}\right]=\left[\begin{array}{@{}cc@{}}-6 / 13 & -179 / 195 \\10 a / 39 & 721 a / 2,340 \\-5 / 13 & -59 / 130 \\7 a / 39 & -83 a / 468 \\2 / 13 & -5 / 39\end{array}\right]\left[\begin{array}{@{}c@{}}P \\a f_{y 0}\end{array}\right].\end{aligned}}
Solution to part e.
Referring to eq. ([eq16.61]) on page , the shear force and bending moment in beam member 1-2 is given by the superposition of the fixed-end solution and the displacement solution as \boldsymbol{\begin{aligned}
\label{eq16.7o}\tag{o}
\left[\begin{array}{@{}c@{}}V_{y}(z) \\M_{x}(z)\end{array}\right]_{1-2}=\left[\begin{array}{@{}c@{}}V_{y}^{0}(z) \\M_{x}^{0}(z)\end{array}\right]_{1-2}+\left[\begin{array}{@{}c@{}}V_{y}^{1}(z) \\M_{x}^{1}(z)\end{array}\right]_{1-2}=\left[\begin{array}{@{}c@{}}V_{y}^{0}(z) \\M_{x}^{0}(z)\end{array}\right]_{1-2}+\left[S^{1}(z)\right]_{1-2}\{q\}_{1-2}.\end{aligned}}
\label{eq16.7p}\tag{p}
\left[\begin{array}{@{}c@{}}V_{y}^{0}(z) \\[3pt]M_{x}^{0}(z)\end{array}\right]_{1-2}=\left[\begin{array}{@{}c@{}}(a-2 z) / 2 \\\left(-a^{2}+6 a z-6 z^{2}\right) / 12\end{array}\right] f_{y 0} \quad 0 \leq z \leq a.\end{aligned}}
\label{eq16.7q}\tag{q}
\left[\begin{array}{@{}c@{}}V_{y}^{1}(z) \\[3pt]M_{x}^{1}(z)\end{array}\right]_{1-2}=\left[S^{1}(z)\right]_{1-2}\left[\begin{array}{@{}l@{}}q_{1} \\q_{2} \\q_{3} \\q_{4}\end{array}\right]=E I\left[\begin{array}{c:c:c:c}-\frac{12}{a^{3}} & \frac{6}{a^{2}} & \frac{12}{a^{3}} & \frac{6}{a^{2}} \\[6pt]\frac{6}{a^{2}}-\frac{12 z}{a^{3}} & -\frac{4}{a}+\frac{6 z}{a^{2}} & -\frac{6}{a^{2}}+\frac{12 z}{a^{3}} & -\frac{2}{a}+\frac{6 z}{a^{2}}\end{array}\right]\left[\begin{array}{@{}c@{}}0 \\0 \\q_{3} \\q_{4}\end{array}\right].\end{aligned}}
\label{eq16.7r}\tag{r}
\left[\begin{array}{@{}c@{}}V_{y}^{1}(z) \\[3pt]M_{x}^{1}(z)\end{array}\right]_{1-2}=E I\left[\begin{array}{@{}cc@{}}\frac{12}{a^{3}} & \frac{6}{a^{2}} \\[6pt]-\frac{6}{a^{2}}+\frac{12 z}{a^{3}} &-\frac{2}{a}+\frac{6 z}{a^{2}}\end{array}\right] \frac{1}{39 E I}\left[\begin{array}{@{}c@{}}a^{3} P+5 a f_{y 0} / 18 \\-\frac{a^{2}}{2} P+37 a f_{y 0} / 60\end{array}\right]=\left[\begin{array}{@{}cc@{}}\frac{6}{13} &\frac{163a}{390}\\[6pt]
\left(\frac{-10 a}{39}+\frac{6 z}{13}\right)&\left(\frac{-263 a^{2}}{1170}+\frac{163 a z}{390}\right)\end{array}\right]\left[\begin{array}{@{}c@{}}P \\f_{y 0}\end{array}\right].\end{aligned}}
Coplanar frame structures
Frame members in a skeletal structure resist applied loads both by axial deformation and bending deformation. Frames are often modeled by assuming the joints are rigid, which means that members meeting at a joint have the same rotation. That is, instead of frictionless pins or ball and socket joints used to model trusses, the connections at a joint under the rigid joint assumption implies that bending moments in the members at the joint do not vanish. When distributed lateral loads act on the member, frame elements may be required even if the joints at the end of the member are modeled as frictionless pins. In a truss the loads are assumed to only act on the joints, and the members are not subject to lateral distributed loads. The stiffness matrix for a frame member is the superposition of the stiffness matrix for a truss member and the stiffness matrix for a beam member. There are three degrees of freedom at each joint in a coplanar frame member: two displacements and a rotation as shown in figure 1.4. In this figure, degrees of freedom labeled one and four account for axial deformation, degrees of freedom two and five account for lateral deformation in bending, and degrees of freedom three and six account for rotations in bending. These degrees of freedom are referred to Cartesian coordinate directions along the longitudinal axis and the axis perpendicular to the member. Let the coordinate along the longitudinal, centroidal axis be denoted by z, 0≤z≤L, and let y be the coordinate perpendicular to the member.
Consider a typical plane frame member between joints i and j in a structure. Joint i is the beginning joint and joint j is the end joint, so that the z-axis is directed from joint i to joint j. Then, the 6X1 generalized displacement vector for the frame member in local coordinate directions is uniquely numbered by {ˉq}=[ˉq3i−2 ˉq3i−1 ˉq3i ˉq3j−2ˉq3j−1 ˉq3j]T.
\[\begin{aligned}
\label{eq16.63}
\left[K_{\text {truss }}\right]=
\boldsymbol{\begin{array}{@{}c@{}}
{\arraycolsep=12pt\begin{array}{@{}c@{}}
\bar{q}_{3 i-2}\phantom{00000} \bar{q}_{3 j-2}\phantom{00000000}\end{array}}\\[6pt]
\left[\begin{array}{@{}cc@{}}
E A / L & -E A / L \\
-E A / L & E A / L\end{array}}
Callstack:
at (Under_Construction/Aerospace_Structures_(Johnson)/16:_Applications_of_the_direct_stiffness_method), /content/body/div/div[3]/p[3]/span[1]/span, line 1, column 1
{\arraycolsep=15pt\begin{array}{@{}cccc@{}}
\bar{q}_{3i-1} & \bar{q}_{3i} & \bar{q}_{3j-1}& \bar{q}_{3j}
\end{array}}\\[6pt]
\left[\begin{array}{@{}cccc@{}}12 E I / L^{3} & -6 E I / L^{2} & -12 E I / L^{3} & -6 E I / L^{2} \\-6 E I / L^{2} & 4 E I / L & 6 E I / L^{2} & 2 E I / L \\-12 E I / L^{3} & 6 E I / L^{2} & 12 E I / L^{3} & 6 E I / L^{2} \\-6 E I / L^{2} & 2 E I / L & 6 E I / L^{2} & 4 E I / L\end{array}}
Transformation of Cartesian coordinates
Let a coplanar frame assembly be defined with respect to global Cartesian coordinate directions (X,Y,Z). The local Cartesian coordinates of a frame member are (z,y,x) with the z-coordinate along the reference axis of the member. The z-axis lies in the X-Y plane at an angle θ with respect to the positive X-direction as shown in figure [fig16.22]. To effect the assembly of member stiffness matrices it is necessary to transform the stiffness matrix ([eq16.64]) of a member from local coordinate directions (z,y,x) to the global coordinate directions (X,Y,Z). The transformation from one Cartesian system (X,Y,Z) to another Cartesian system (z,y,x) at joint i is effected by the direction cosines of the latter with respect to the former. For example, denote the cosine of the angle of the z-direction with respect to the Z-direction as cos(z,Z) , the cosine of the angle of the z-direction with respect to the Y-direction as cos(z,Y), etc. Then the Cartesian coordinate transformation from global to local directions in terms of the direction cosines is
z=cos(z,X)X+cos(z,Y)Y+cos(z,Z)Zy=cos(y,X)X+cos(y,Y)Y+cos(y,Z)Zx=cos(x,X)X+cos(x,Y)Y+cos(x,Z)Z.
The generalized displacements corresponding to local coordinates (z,y,x) at joint i are {ˉqi}=[ˉq3i−2ˉq3i−1ˉq3i]T, and the generalized displacements corresponding to global coordinates (X,Y,Z) at joint i are {qi}=[q3i−2q3i−1q3i]T. The directions of the generalized displacements coincide with the coordinate directions as is shown in figure [fig16.22]. It follows from the coordinate transformation eq. ([eq16.71]) that the transformation of the generalized displacements from local to global directions is [ˉq3i−2ˉq3i−1ˉq3i]=[cosθsinθ0−sinθcosθ000−1][q3i−2q3i−1−q3i]=[cosθsinθ0−sinθcosθ0001][q3i−2q3i−1q3i].
Let c=cosθ and s=sinθ. The transformation of the displacements at joint j is the same matrix equation as at joint i except that the components of the vectors are those corresponding to joint j. Hence, the transformation of the generalized displacement vector from global to local coordinate directions for frame member i-j can be written in matrix form as [ˉq3i−2ˉq3i−1ˉq3iˉq3j−2ˉq3j−1ˉq3j]=[cs0000−sc0000001000000cs0000−sc0000001][q3i−2q3i−1q3iq3j−2q3j−1q3j].
Frame stiffness matrix in global coordinate directions
The generalized joint force vector for frame member i-j transforms from global coordinate directions to local coordinate directions in the same manner as the generalized displacement vector does for the member. Hence, from eq. ([eq16.84]) the transformation of the 6X1 generalized force vector for element i-j is {ˉQ}=[T]{Q},
To obtain the 6X6 frame element stiffness matrix in global coordinate directions, substitute ([eq16.84]) for the generalized displacement vector, and substitute ([eq16.86]) for the generalized force vector, into eq. ([eq16.66]) to get [T]{Q}=[ˉK][T]{q}.
The frame stiffness matrix ([eq16.90]) is symmetric and singular, and the diagonal elements are positive. Equilibrium of the frame member shown in figure 1.6 for each of the six unit displacement states leads to the following relations for the elements of the stiffness matrix.
Horizontal equilibrium: k1j+k4j=0, j=1,2,…,6, which implies row 1 plus row 4 = 0.
Vertical equilibrium: k2j+k5j=0, j=1,2,…,6, which leads to row 2 plus row 5 = 0.
Moment equilibrium about joint i: k3j+(Lsinθ)k4j−(Lcosθ)k5j+k6j=0, j=1,2,…,6, which leads to row 3 plus (L sine(θ)) times row 4 minus (L cosine(θ)) times row 5 plus row 6=0.
Frame stress matrix
The stress matrix for the frame member i-j relates the internal axial force N, the transverse shear force V, and the bending moment M to the generalized joint displacement vector. We can combine the stress matrix for the truss member, eq. ([eq16.14]), and the stress matrix for the beam member, eq. ([eq16.44]), if local coordinate direction displacements are employed. With due regard for the joint numbering convention for the frame member relative to the numbering convention of the truss and beam members, the following relationship can be obtained from the stress matrices of the truss and beam members: [NVM]i−j=[−EA/L00EA/L000−12EI/L36EI/L2012EI/L36EI/L20EI(6L2−12zL3)EI(−4L+6zL2)0EI(−6L2+12zL3)EI(−2L+6zL2)]⏟[ˉS(z)]i−j\raisebox1.4pc$i−j$[ˉq3i−2ˉq3i−1ˉq3iˉq3j−2ˉq3j−1ˉq3j].
_{i-j}&=\left[\begin{array}{@{}cccc@{}}-E A / L & 0 & 0 & E A / L \\0 & -12 E I / L^{3} & 6 E I / L^{2} & 0 \\0 & E I\left(\frac{6}{L^{2}}-\frac{12 z}{L^{3}}\right) & E I\left(-\frac{4}{L}+\frac{6 z}{L^{2}}\right) & 0\end{array}\right.\left.\begin{array}{@{}ccc@{}}0 & 0 \\12 E I / L^{3} & 6 E I / L^{2} \\E I\left(-\frac{6}{L^{2}}+\frac{12 z}{L^{3}}\right) & E I\left(-\frac{2}{L}+\frac{6 z}{L^{2}}\right)\end{array}\right] \\
&\quad\hspace*{-1.4pt}\left[\begin{array}{@{}cccccc@{}}c & s & 0 & 0 & 0 & 0 \\-s & c & 0 & 0 & 0 & 0 \\0 & 0 & 1 & 0 & 0 & 0 \\0 & 0 & 0 & c & s & 0 \\0 & 0 & 0 & -s & c & 0 \\0 & 0 & 0 & 0 & 0 & 1\end{array}\right].\end{aligned}}
[ex16.8]The coplanar rectangular frame shown in figure 1.7 consists of three members: 1-2, 2-3, and 3-4. Joints1 and 4 are restrained against displacement and rotation. At joint 2 there is a rigid connection between members 1-2 and 2-3, and at joint 3 there is a rigid connection between members 2-3 and 3-4. Joints 2 and 3 are moveable, and the generalized displacement vector for these joints is {qα}=[q4q5q6q7q8q9]T. Each member has a cross-sectional area A=1,500 mm2, second area moment I=2.8×106 mm4, and the same modulus of elasticity E=70×103 N/mm2. The direction cosines for member 1-2 are (c,s)=(0,1), for member 2-3 (c,s)=(1,0), and for member 3-4 (c,s)=(0,−1). Determine the generalized displacements of the movable joints 2 and 3, and the bending moment in each member.
The stiffness matrix ([eq16.90]) for each member including only the generalized displacements of joints 2 and 3 are as follows: \boldsymbol{\begin{aligned}
\left[K_{1-2}\right]&=
\begin{array}{@{}c@{}}
{\arraycolsep=16pt
\begin{array}{@{}ccc@{}}\hspace*{-1pc}q_{4} & q_{5} & q_{6}\end{array}} \\[3pt]\left[\begin{array}{@{}ccc@{}}(12 E I) / h^{3} & 0 & (-6 E I) / h^{2} \\0 & (E A) / h & 0 \\(-6 E I) / h^{2} & 0 & (4 E I) / h\end{array}\right]\end{array}=\begin{array}{@{}c@{}}
{\arraycolsep=16pt\begin{array}{@{}ccc@{}}q_{4} & q & q_{6}\end{array}} \\[3pt]\left[\begin{array}{@{}ccc@{}}294 & 0 & -294{,}000 \\0 & 52{,}500 & 0 \\-294{,}000 & 0 & 3.92 \times 10^{8}\end{array}\right]\end{array},\nonumber\\
\left[K_{2-3}\right]&=\begin{array}{@{}c@{}}
{\arraycolsep=22pt\begin{array}{@{}cccccc@{}}
\hspace*{-1pc}q_4 & q_5 & q_6 & q_7 & q_8 & q_9
\end{array}}\\[3pt]
\left[\begin{array}{@{}cccccc@{}}(E A) / L & 0 & 0 &(-E A) / L & 0 & 0 \\0 & (12 E I) / L^{3} & (-6 E I) / L^{2} &0 & (-12 E I) / L^{3} & (-6 E I) / L^{2} \\0 & (-6 E I) / L^{2} & (4 E I) / L &0 & (6 E I) / L^{2} & (2 E I) / L \\
(-E A) / L & 0 & 0 &(E A) / L & 0 & 0\\
0 & (-12 E I) / L^{3} & (6 E I) / L^{2} &0 & (12 E I) / L^{3} & (6 E I) / L^{2} \\
0 & (-6 E I) / L^{2} & (2 E I) / L &0 & (6 E I) / L^{2} & (4 E I) / L
\end{array}\right]\end{array},\label{eq16.8a}\tag{a} \\
\left[K_{2-3}\right]&=
\begin{array}{@{}c@{}}
{\arraycolsep=20pt\begin{array}{@{}cccccc@{}}
q_4 & q_5 & q_6 & q_7 & q_8 & q_9
\end{array}}\\[6pt]
\left[\begin{array}{@{}cccccc@{}}65{,}625 & 0 &0&-65{,}625 & 0 & 0 \\
0 & 574.219 & -459{,}375 &0 & -574.219 & -459{,}375\\
0& -459{,}375 &4.9 \times 10^{8} &0 & 459{,}375 & 2.45 \times 10^{8} \\
-65{,}625 & 0 &0 & 65{,}625 & 0 & 0 \\
0 & -574.219 &459{,}375 & 0 & 574.219 & 459,375 \\
0&-459{,}375 & 2.45 \times 10^{8} & 0 & 459{,}375 & 4.9 \times 10^{8}\end{array}\right]\end{array}\mbox{, and}\label{eq16.8b}\tag{b} \displaybreak\\
\hspace*{2pc}\left[K_{3-4}\right]&=
\begin{array}{@{}c@{}}
{\arraycolsep=16pt
\begin{array}{@{}ccc@{}}q_{7} & q_{8} & q_{9}\end{array}} \\[6pt]
\left[\begin{array}{@{}ccc@{}}(12 E I) / h^{3} & 0 & (6 E I) / h^{2} \\0 & (E A) / h & 0 \\(6 E I) / h^{2} & 0 & (4 E I) / h\end{array}\right]\end{array}=
\begin{array}{@{}c@{}}
{\arraycolsep=16pt
\begin{array}{@{}ccc@{}}q_{7} & q_{8} & q_{9}\end{array}} \\[6pt]
\left[\begin{array}{@{}ccc@{}}294 & 0 & 294,000 \\0 & 52,500 & 0 \\294,000 & 0 & 3.92 \times 10^{8}\end{array}\right]\end{array}.\label{eq16.8c}\tag{c}\end{aligned}}
\label{eq16.8d}\tag{d}
\left[K_{\alpha \alpha}\right]=\begin{array}{@{}c@{}}
{\arraycolsep=20pt\begin{array}{@{}cccccc@{}}
q_4 & q_5 & q_6 & q_7 & q_8 & q_9
\end{array}}\\[6pt]
\left[\begin{array}{@{}cccccc@{}}65,919 & 0 & -294,000 & -65,625 & 0 & 0 \\0 & 53,074.2 & -459,375 & 0 & -574.219 & -459,375 \\-294,000 & -459,375 & 8.82 \times 10^{8} & 0 & 459,375 & 2.45 \times 10^{8} \\-65,625 & 0 & 0 & 65,919 & 0 & -294,000 \\0 & -574.219 & 459,375 & 0 & 53,074.2 & 459,375 \\0 & -459,375 & 2.45 \times 10^{8} & -294,000 & 459,375 & 8.82 \times 10^{8}\end{array}\right]\end{array}.\end{aligned}}
\label{eq16.8e}\tag{e}
\begin{split}
q_{4}=41.6931 \mathrm{~mm} \quad q_{5}=0.18859 \mathrm{~mm} \quad q_{6}=0.0110439\, \mathrm{rad} \text {. }\\
q_{7}=41.5561 \mathrm{~mm} \quad q_{8}=-0.18859 \mathrm{~mm} \quad q_{9}=0.0109807\, \mathrm{rad}
\end{split}.\end{aligned}}
\label{eq16.8f}\tag{f}
(M_{x})_{1-2}=\left[-E I(6 / h^{2}-12 z / h^{3}) 0\ E I(-4 / h+6 z / h^{2})-E I(-6 / h^{2}+12 z / h^{3}) 0\ E I(-2 / h+6 z / h^{2})\right]\left\{q_{1-2}\right\},\end{aligned}}
\left(M_{x}\right)_{1-2}=(294,000-294 . z) q_{4}+(-1.96 \times 10^{8}+294,000 z) q_{6} &=1.00931 \times 10^{7}-9,010.84 z \nonumber\\
&\quad 0 \leq z \leq 2,000 \mathrm{~mm}.\label{eq16.8g}\tag{g}\end{aligned}}
\left(M_{x}\right)_{2-3} &=(459,375-574.219 {z}) q_{5}+(-4.9 \times 10^{8}+459,375 {z}) q_{6}+(-459,375+574.219 {z}) q_{8} \nonumber\\
&\quad +(-2.45 \times 10^{8}+459,375 {z}) q_{9}=-7.92854 \times 10^{6}+9,900.99 {z} \quad 0 \leq {z} \leq 1,600 \mathrm{~mm}\mbox{, and}\label{eq16.8h}\tag{h}\\
\hspace*{-4pt}\left(M_{x}\right)_{3-4} &=(294,000-294 {z}) q_{7}+(-3.92 \times 10^{8}+294,000 {z}) q_{9}=7.91305 \times 10^{6}-8,989.16 {z}, 0 \leq {z} \leq 2,000 \mathrm{~mm}.\label{eq16.8i}\tag{i}\end{aligned}}
Practice exercises
Consider the plane truss restrained against rigid body motion and subject to the loads shown in figure [fig16.26](a). Use the degree of freedom numbering convention based on the joint numbering as shown in figure [fig16.26](b). All four bars have the same modulus of elasticity E=10×106psi, and the same A/L where the cross-sectional area for bar 1-2 is 0.5 in.2 Solve by hand the computations for the
unrestrained structural stiffness matrix,
restrained structural stiffness matrix, and
unknown joint displacements.
Consider the plane truss consisting of five bars shown in figure [fig16.27](a). Each bar has the same extensional stiffness EA. Use the degree of freedom numbering convention based on the joint numbers labeled in the figure.
Determine the unrestrained structural stiffness matrix.
Joints 1 and 3 are restrained such that q1=q2=q6=0, and it is assumed the loads are applied in the remaining degrees of freedom. Determine the submatrix [Kβα].
For the seven-bar truss shown in figure [fig16.27](b) all bars have the same value for EA/L. The horizontal displacement of joint 5 is prescribed as q9=1. All applied forces are zero. Use symmetry to reduce the order of the restrained structural stiffness matrix [Kαα] and then determine the unknown nodal displacements q3,q4,q5, and q6.
In the three-bar truss shown in figure [fig16.27](c) the temperature of bar 1-2 is increased 100∘C above ambient temperature, while bars 1-3 and 1-4 remain at ambient temperature. The bars are made of aluminum alloy with a modulus of elasticity E=69GPa and coefficient of thermal expansion α=23.6×10−6/∘C. The length of each bar L=250 mm, and the cross-sectional area of each bar A=400 mm2.
Determine
the 8X1 fixed-end action vector,
the 8X8 unrestrained structural stiffness matrix,
the joint displacements q1 and q2 of movable joint 1,
the support reactions, and
the bar forces. State if they are in tension or compression.
The uniform, multispan beam shown in figure [fig16.28] is clamped at each end and subject to vertical point loads at joints 2 and 4. Use the joint numbers indicated in the figure, and the degree of freedom numbering convention associated with the joint numbers.
Use symmetry to reduce the problem size and compute the joint displacement vector in terms of P, L, and EI.
Determine the shear force and bending moment distributions in each span in terms of P and L. Sketch the shear force and bending moment diagrams.
Determine the support reactions.
The flexural stiffness of the uniform beam shown in figure [fig16.29] is El, and it has a of length 2L. It is supported by linear elastic springs at each end, each with a stiffness k=6EI/L3. It is subject to the linearly varying distributed load whose intensity is fy1 at midspan.
Use two members to model the beam, and use the degrees of freedom (DOFs) numbering shown in the figure.
Use symmetry about the vertical centerline and determine the restrained structural stiffness matrix in DOFs 1, 2, and 3, and in terms of parameters EI and L.
Determine the 6X1 fixed-end action vector {Q0} in terms of fy1 and L.
Solve for the unknown joint displacement vector [q1q2q3q4q5q6]T in terms of EI, L, and fy1.
Consider the frame shown in figure [fig16.30](a) consisting of a vertical bar 1-2 and a horizontal bar 2-3, which are joined together by a rigid connection at joint 2. The ends of the bars opposite to their common joint are clamped. The horizontal bar 1-2 is subject to a linearly distributed load. The degree of freedom numbering convention is shown in figure [fig16.30](b).
Determine the restrained structural stiffness matrix [Kαα].
Determine the 9X1 fixed-end action vector {Q0}.
Consider the model of a strut-braced wing spar shown in figure [fig16.31] subject to the span-wise air load approximated as a linearly varying distributed line load. The intensity of the distributed load at the root fy1=130.2083lb./in. and the resultant lift acting on the spar is 12fy1(32×12)=25,000lb.
The spar is clamped at the root and free at the tip, and the strut is pinned-connected to the spar and the support. The matrix structural model consists of three members as shown in figure [fig16.32](a). Since the air load bends the spar which in turn stretches the strut, the structure is modeled with a frame member between joints 1 and 2, a beam member between joints 2 and 3. and a truss bar between joints 2 and 4. The degree of freedom numbering convention is shown in figure [fig16.32](b).
Determine the fixed-end action vector {Q0} and its partitions {Q0α} and {Q0β}. The α-indices are 4, 5, 6, 7, and 8, and the β-indices are 1, 2, 3, 9, and 10.
Additional numerical data are listed in table [tab16.7]. Determine the unknown nodal displacements.
The det([A]), where k is a scalar and [A] is an n-by-n matrix, is equal to kndet[A].↩