Skip to main content
Engineering LibreTexts

0.1: Divison Theorem

  • Page ID
    7446
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    For all \(a\), \(n\in Z\) with \(n\neq 0\), there exist unique \(q\),\(r\in Z\) satisfying \(a = qn + r\) and \(0\le r<|n|\). Since \(q\) and \(r\) are unique, we use \(\lfloor{a/n}\rfloor\) to denote \(q\) and \(a\) % \(n\) to denote \(r\). Hence:

    \(a=|\frac{a}{n}|n+(a\)%\(n)\).

    The % symbol is often called the modulo operator. Beware that some programming languages also have a % operator in which a % \(n\) always has the same sign as a. We will instead use the convention that a % \(n\) is always always nonnegative.


    0.1: Divison Theorem is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mike Rosulek.

    • Was this article helpful?