Skip to main content
Engineering LibreTexts

1.7: Exercises

  • Page ID
    94047
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    (Assume diodes are silicon unless stated otherwise)

    2.7.1: Analysis Problems

    1. For the circuit of Figure \(\PageIndex{1}\) determine the circulating current if the supply is 6 volts and the resistor is 10 k\(\Omega\).

    clipboard_e46c608349b710d69d8cf51b0a649cc7f.png

    Figure \(\PageIndex{1}\)

    2. Repeat Problem 1 if the diode is inserted in the opposite orientation.

    3. Given the circuit of Figure \(\PageIndex{2}\), determine the voltage drops across the resistors. The source is 12 volts, \(R_1\) = 4.7 k and \(R_2\) = 3.3 k.

    clipboard_e67ac7bd68c2a43b061fd0d820d8544a7.png

    Figure \(\PageIndex{2}\)

    4. In Figure \(\PageIndex{3}\) determine the voltage drops across the resistors.

    clipboard_eeb3e209be2504480078e654dac274e71.png

    Figure \(\PageIndex{3}\)

    5. Determine the LED current in Figure \(\PageIndex{4}\). Assume the LED barrier is 2.1 volts, the source is 5 volts and the resistor is 330 \(\Omega\).

    clipboard_e443d3115d59f3dfdb95e1e6fb73318b1.png

    Figure \(\PageIndex{4}\)

    6. Repeat Problem 5 if the LED is inserted in reverse orientation.

    7. Determine the resistor currents in Figure \(\PageIndex{5}\). The source is 15 volts, \(R_1\) = 8.2 k and \(R_2\) = 3.9 k.

    clipboard_ed507b1206533147b2f51e7963ed1204a.png

    Figure \(\PageIndex{5}\)

    8. For the circuit of Figure \(\PageIndex{6}\), determine the resistor voltage. The source is 9 volts, the Zener potential is 5.1 volts and the resistor is 1 k.

    clipboard_ed9d6bd28ddae15bd956df83512df386f.png

    Figure \(\PageIndex{6}\)

    9. For the circuit of Figure \(\PageIndex{7}\), determine the resistor voltage. The source is 8 volts, the Zener potential is 3.3 volts and the resistor is 10 k.

    clipboard_ee3e2fec3e01d1a0369a5a4bbca981e26.png

    Figure \(\PageIndex{7}\)

    10. Determine the voltage across \(R_2\) in Figure \(\PageIndex{8}\) if the source is 9 volts, the Zener is 6.8 volts, \(R_1\) = 5.1 k and \(R_2\) = 33 k.

    clipboard_eb03cfd875af0b2542b254a2f463f958c.png

    Figure \(\PageIndex{8}\)

    2.7.2: Challenge Problems

    11. Determine the resistor voltage in Figure \(\PageIndex{9}\) if \(E_1\) = 5 volts, \(E_2\) = 9 volts and \(R\)= 1 k.

    clipboard_e6f95b6860f5f4d6338b4509f142f502c.png

    Figure \(\PageIndex{9}\)

    12. Determine the voltage across \(R_2\) in Figure \(\PageIndex{8}\) if the source is 9 volts, the Zener is 5.6 volts, \(R_1\) = 5.1 k and \(R_2\) = 3.9 k.

    2.7.3: Design Problems

    13. Determine a value for \(R\) in Figure \(\PageIndex{1}\) to set the current to 10 mA if the source is 5 volts.

    14. Determine a value for \(R\) in Figure \(\PageIndex{4}\) that will set the LED current to approximately 20 mA if the source is 9 volts and the LED is a standard red type. Use a standard resistor value.

    2.7.4: Computer Simulation Problems

    15. Simulate Problem 9.

    16. Simulate the circuit designed in Problem 14 for verification.


    This page titled 1.7: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James M. Fiore via source content that was edited to the style and standards of the LibreTexts platform.