Skip to main content
Engineering LibreTexts

2.1.2: Rotorcraft

  • Page ID
    78086
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    A rotorcraft (or rotary wing aircraft) is a heavier-than-air aircraft that uses lift generated by wings, called rotor blades, that revolve around a mast. Several rotor blades mounted to a single mast are referred to as a rotor. The International Civil Aviation Organization (ICAO) defines a rotorcraft as supported in flight by the reactions of the air on one or more rotors. Rotorcraft include:

    • Helicopters.
    • Autogyros.
    • Gyrodinos.
    • Combined.
    • Convertibles.

    截屏2022-01-10 下午8.21.46.png
    Figure 2.6: Helicopter.

    A helicopter is a rotorcraft whose rotors are driven by the engine (or engines) during the flight, to allow the helicopter to take off vertically, hover, fly forwards, backwards, and laterally, as well as to land vertically. Helicopters have several different configurations of one or more main rotors. Helicopters with one driven main rotor require some sort of anti-torque device such as a tail rotor. See Figure 2.6 as illustration of an helicopter.

    An autogyro uses an unpowered rotor driven by aerodynamic forces in a state of autorotation to generate lift, and an engine-powered propeller, similar to that of a fixed- wing aircraft, to provide thrust and fly forward. While similar to a helicopter rotor in appearance, the autogyro’s rotor must have air flowing up and through the rotor disk in order to generate rotation.

    The rotor of a gyrodyne is normally driven by its engine for takeoff and landing (hovering like a helicopter) with anti-torque and propulsion for forward flight provided by one or more propellers mounted on short or stub wings.

    The combined is an aircraft that can be either helicopter or autogyro. The power of the engine can be applied to the rotor (helicopter mode) or to the propeller (autogyro mode). In helicopter mode, the propeller assumes the function of anti-torque rotor.

    The convertible can be either helicopter or airplane. The propoller-rotor (proprotor) changes its attitude 90 [deg] with respect to the fuselage so that the proprotor can act as a rotor (helicopter) or as a propeller with fixed wings (airplane).


    2.1.2: Rotorcraft is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by Manuel Soler Arnedo via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?