Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Engineering LibreTexts

11: Tradeoffs

( \newcommand{\kernel}{\mathrm{null}\,}\)

It is important to fully understand the problem you need to solve before choosing a data structure because each structure is optimized for a particular job. Hash tables, for example, favor fast lookup times over memory usage while arrays are compact and inflexible. Other structures, such as stacks, are optimized to enforce rigid rules on how data is added, removed and accessed throughout the program execution. A good understanding of data structures is fundamental because it gives us the tools for thinking about a program's behavior in a structured way.

Sequences (aka lists):

Array Dynamic Array Array Deque Singly Linked List Double Linked List
Push (Front) - O(n) O(1) O(1) O(1)
Pop (Front) - O(n) O(1) O(1) O(1)
Push (Back) - O(1) O(1) O(n), maybe O(1)* O(1)
Pop (Back) - O(1) O(1) O(n) O(1)
Insert before (given iterator) - O(n) O(n) O(n) O(1)
Delete (given iterator) O(n) O(n) O(n) O(1)
Insert after (given iterator) O(n) O(n) O(1) O(1)
Delete after (given iterator) - O(n) O(n) O(1) O(1)
Get nth element (random access) O(1) O(1) O(1) O(n) O(n)
Good for implementing stacks no yes (back is top) yes yes (front is top) yes
Good for implementing queues no no yes maybe* yes
C++ STL std::array std::vector std::deque std::forward_list std::list
Java Collections java.util.Array java.util.ArrayList java.util.ArrayDeque - java.util.LinkedList
* singly-linked lists can push to the back in O(1) with the modification that you keep a pointer to the last node

Associative containers (sets, associative arrays):

Sorted Array Sorted Linked List Self-balancing Binary Search Tree Hash Table
Find key O(log n) O(n) O(log n) O(1) average O(n) worst
Insert element O(n) O(n) O(log n) O(1) average O(n) worst
Erase key O(n) O(n) O(log n) O(1) average O(n) worst
Erase element (given iterator) O(n) O(1) O(1) O(1)
Can traverse in sorted order? yes yes yes no
Needs comparison function comparison function comparison function hash function
C++ STL - - std::set

std::map
std::multiset
std::multimap

std::unordered_set

std::unordered_map
std::unordered_multiset
std::unordered_multimap

Java Collections - - java.util.TreeSet

java.util.TreeMap

java.util.HashSet

java.util.HashMap

Various Types of Trees

Binary Search AVL Tree Binary Heap (min) Binomial Queue (min)
Insert element O(log n) O(log n) O(log n) O(1) (on average)
Erase element O(log n) O(log n) unavailable unavailable
Delete min element O(log n) O(log n) O(log n) O(log n)
Find min element O(log n) O(log n) O(1) O(log n) (can be O(1) if ptr to smallest)
Increase key unavailable unavailable O(log n) O(log n)
Decrease key unavailable unavailable O(log n) O(log n)
Find O(log n) O(log n) unavailable unavailable
Delete element O(log n) O(log n) unavailable unavailable
Create O(1) O(1) O(1) O(1)
find kth smallest O(log n) O(log n) O((k-1)*log n) O(k*log n)

Hash table:

Hash table (hash map)
Set Value Ω(1), O(n)
Get Value Ω(1), O(n)
Remove Ω(1), O(n)

This page titled 11: Tradeoffs is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Wikibooks - Data Structures (Wikipedia) .

  • Was this article helpful?

Support Center

How can we help?