Skip to main content
Engineering LibreTexts

3.3: Floating-point Representation

  • Page ID
    19871
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The representation issues for floating-point numbers are more complex. There are a series of floating-point representations for various ranges of the value. For simplicity, we will look primarily at the IEEE 754 32-bit floating-point standard.

    Representation

    The IEEE 754 32-bit floating-point standard is defined as follows:

    截屏2021-07-18 下午5.05.27.png

    Where s is the sign (0 => positive and 1 => negative). More formally, this can be written as;

    \[N = (-1)^{s} \times 1.F \times 2^{E - 127} \nonumber\]

    When representing floating-point values, the first step is to convert floating-point value into binary. The following table provides a brief reminder of how binary handles fractional components:

    \(2^3\) \(2^2\) \(2^1\) \(2^0\) \(2^{-1}\) \(2^{-2}\) \(2^{-3}\)
    ... 8 4 2 1 . 1/2 1/4 1/8 ...
    0 0 0 0 . 0 0 0

    For example, \(100.101_2\) would be \(4.625_{10}\). For repeating decimals, calculating the binary value can be time consuming. However, there is a limit since computers have finite storage sizes (32-bits in this example).

    The next step is to show the value in normalized scientific notation in binary. This means that the number should have a single, non-zero leading digit to the left of the decimal point. For example, \(8.125_{10}\) is \(1000.001_2\) (or 1000.0012 x 20) and in binary normalized scientific notation that would be written as \(1.000001 \times 2^3\) (since the decimal point was moved three places to the left). Of course, if the number was \(0.125_{10}\) the binary would be \(0.001_2\) (or \(0.001_2 \times 2^0\)) and the normalized scientific notation would be \(1.0 \times 2^{-3}\) (since the decimal point was moved three places to the right). The numbers after the leading 1, not including the leading 1, are stored left-justified in the fraction portion of the double-word.

    The next step is to calculate the biased exponent, which is the exponent from the normalized scientific notation plus the bias. The bias for the IEEE 754 32-bit floating- point standard is \(127_{10}\). The result should be converted to a byte (8-bits) and stored in the biased exponent portion of the word.

    Note, converting from the IEEE 754 32-bit floating-point representation to the decimal value is done in reverse, however leading 1 must be added back (as it is not stored in the word). Additionally, the bias is subtracted (instead of added).

    32-bit Representation Examples

    This section presents several examples of encoding and decoding floating-point representation for reference.

    3.3.1.1.1 Example \(\to -7.75_{10}\)

    For example, to find the IEEE 754 32-bit floating-point representation for \(-7.75_{10}\):

    Example \(\PageIndex{1}\) -7.75

    • determine sign -7.75 => 1 (since negative)
    • convert to binary -7.75 = \( -0111.11_2\)
    • normalized scientific notation = \(1.1111 \times 2^2\)
    • compute biased exponent \(2_{10} + 127_{10} = 129_{10}\)

      ◦ and convert to binary =\(10000001_2\)

    • write components in binary:
      sign exponent mantissa
      1 10000001 11110000000000000000000
    • convert to hex (split into groups of 4)
      11000000111110000000000000000000
      1100 0000 1111 1000 0000 0000 0000 0000
      C 0 F 8 0 0 0 0
    • final result: \(C0F8\ 0000_{16}\)

    3.3.1.1.2 Example \(\to -0.125_{10}\)

    For example, to find the IEEE 754 32-bit floating-point representation for \(-0.125_{10}\):

    Example \(\PageIndex{2}\) -0.125

    • determine sign -0.125 => 1 (since negative)
    • convert to binary -0.125 = \( -0.001_2\)
    • normalized scientific notation = \(1.0 \times 2^{-3}\)
    • compute biased exponent \(-3_{10} + 127_{10} = 124_{10}\)

      ◦ and convert to binary =\(01111100_2\)

    • write components in binary:
      sign exponent mantissa
      1 01111100 00000000000000000000000
    • convert to hex (split into groups of 4)
      10111110000000000000000000000000
      1011 1110 0000 0000 0000 0000 0000 0000
      B E 0 0 0 0 0 0
    • final result: \(BE00\ 0000_{16}\)

    3.3.1.1.3 Example \(\to 41440000_{16}\)

    For example, given the IEEE 754 32-bit floating-point representation \(41440000_{16}\) find the decimal value:

    Example \(\PageIndex{3}\) \(41440000_{16}\)

    • convert to binary
      0100 0001 0100 0100 0000 0000 0000 00002
    • split into components
      0 10000010 100010000000000000000002
    • determine exponent \(10000010_2 = 130_{10}\)
      ◦ and remove bias \(130_{10} - 127_{10} = 3_{10}\)
    • determine sign 0 => positive
    • write result \(+1.10001 \times 2^3 = +1100.01 = +12.25\)

    Representation

    The IEEE 754 64-bit floating-point standard is defined as follows:

    截屏2021-07-18 下午5.23.47.png

    The representation process is the same, however the format allows for an 11-bit biased exponent (which support large and smaller values). The 11-bit biased exponent uses a bias of \(\pm 1023\).

    Number (NaN)

    When a value is interpreted as a floating-point value and it does not conform to the defined standard (either for 32-bit or 64-bit), then it cannot be used as a floating-point value. This might occur if an integer representation is treated as a floating-point representation or a floating-point arithmetic operation (add, subtract, multiply, or divide) results in a value that is too large or too small to be represented. The incorrect format or unrepresentable number is referred to as a NaN which is an abbreviation for not a number.


    This page titled 3.3: Floating-point Representation is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Ed Jorgensen.

    • Was this article helpful?