Skip to main content
Engineering LibreTexts

3.1: The Optical Kerr Effect

  • Page ID
    44646
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In an isotropic and homogeneous medium, the refractive index can not depend on the direction of the electric field. Therefore, to lowest order, the refractive index of such a medium can only depend quadratically on the field, i.e. on the intensity [22]

    \[\begin{align*} n &= n(\omega, |A|^2) \\[4pt] &\approx n_0 (\omega) + n_{2, L} |A|^2. \end{align*} \nonumber \]

    Here, we assume, that the pulse envelope \(A\) is normalized such that \(|A|^2\) is the intensity of the pulse. This is the optical Kerr effect and \(n_{2,L}\) is called the intensity dependent refractive index coefficient. Note, the nonlinear index depends on the polarization of the field and without going further into details, we assume that we treat a linearly polarized electric field. For most transparent materials the intensity dependent refractive index is positive.

    Material Refractive index \(n\) \(n_{2, L} [cm^2/W]\)
    Sapphire (\(\ce{Al2O3}\)) 1.76 @ 850 nm \(3 \times 10^{-16}\)
    Fused Quarz 1.45 @ 1064 nm \(2.46 \times 10^{-16}\)
    Glass (LG-760) 1.5 @ 1064 nm \(2.9 \times 10^{-16}\)
    YAG (\(\ce{Y3AL5O12}\)) 1.82 @ 1064 nm \(6.2 \times 10^{-16}\)
    YLF (\(\ce{LiYF4}\)), \(n_e\) 1.47 @ 1047 nm \(1.72 \times 10^{-16}\)
    Si 3.3 @ 1550 nm \(4 \times 10^{-14}\)

    This page titled 3.1: The Optical Kerr Effect is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz X. Kaertner (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.