15: References
- Page ID
- 82572
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)[1] W. H. Wiser, Energy Resources: Occurence, Production, Conversion, Use. New York: Springer, 2000.
[2] M. J. Moran, Availability Analysis. American Society of Mechanical, 1990.
[3] M. A. Kettani, Direct Energy Conversion. Addison Wesley, 1970.
[4] R. Decher, Direct Energy Conversion. Oxford, 1996.
[5] S. L. Soo, Direct Energy Conversion. Prentice Hall, 1968.
[6] A. R. von Hippel, Dielectrics and Waves. Wiley, 1954.
[7] A. Thompson and B. N. Taylor, Guide for the Internation System of Units. NIST, 2008. http://physics.nist.gov/Pubs/SP811/ appenB9.html Date accessed 6-1-18.
[8] Energy calculators. http://www.eia.gov/kids/energy.php? page=about_energy_conversion_calculator-basics. Date accessed 6-1-18.
[9] B. Streetman, Solid State Electronic Devices, 4 ed. New York: Prentice Hall, 1999.
[10] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. NY: John Wiley and Sons, 1991.
[11] N. N. Rao, Elements of Engineering Electromagnetics, 6 ed. New Jersey: Prentice Hall, 2004.
[12] J. W. Hill and R. H. Petrucci, General Chemistry. Pearson, 1999.
[13] M. G. Mayer, Rare-earth and transuranic elements, Physical Review, vol. 60, 1941.
[14] B. G. Wybourne, Classical Groups for Physicists. New York, NY: Wiley, 1974. 356 REFERENCES [15] E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems. New York: Prentice Hall, 1968.
[16] Ford focus review. http://www.edmunds.com/ford/focus/ review.html. Date accessed 6-1-18.
[17] http://www.oreo.co.uk/products/original-oreo. Date accessed 6-1-18.
[18] T. K. Liu, Gate dielectric scaling-integrating alternative high k gate dielectrics. http://www.cs.berkeley.edu/~tking/high. html. Date accessed 6-1-18.
[19] D. Wolfe, K. Flock, R. Therrien, R. Johnson, B. Rayner, L. Gunther, N. Brown, B. Clain, and G. Lucovsky, Remote plasma-enhancedmetal organic chemical vapor deposition of zirconium oxide/silicon oxide alloy thin lms for advanced high-k gate dielectrics, in Materials Research Society Symposium Proceedings, vol. 567 (Warrendale, PA), Materials Research Society, 1999, pp. 343348.
[20] Y. Nishioka, Ultrathin tantalum pent-oxide lms for ulsi gate dielectrics, in Materials Research Society Symposium Proceedings, vol. 567 (Warrendale, PA), Materials Research Society, 1999, pp. 361 370.
[21] http://www.digikey.com.
[22] P. Horowitz and W. Hill, Art of Electronics. Cambridge, 1989.
[23] B. Dobkin and J. Williams, Analog Circuit Design. Newnes, 2011.
[24] C. Klein, Mineral Science, 22 ed. New York: John Wiley, 2002.
[25] C. Kittel, Introduction to Solid State Physics, 7 ed. New York: John Wiley and Sons, 1996.
[26] N. W. Ashcroft and N. D. Mermin, Solid State Physics. Fort Worth: Saunders, 1976.
[27] R. J. Pressley, CRC Handbook of Lasers. Chemical Rubber Co, 1971.
[28] M. Tinkham, Group Theory and Quantum Mechanics. Dover, 1964.
[29] A. Schöenies, Kristallsysteme und Kristallstruktur. 1891. REFERENCES 357 [30] Crystal systems. https://en.wikipedia.org/wiki/Crystal_ system. Date accessed 6-1-18.
[31] A. Yariv, Quantum Electronics, 3 ed. Wiley, 1989.
[32] Mindat website. http://www.mindat.org. Date accessed 6-1-18.
[33] R. Goldman, Ultrasonic Technology. Reinhold, 1962.
[34] P. K. Panda, Review: environmentally friendly lead-free piezoelectric materials, Journal of Materials Science, vol. 44, pp. 50495062, 2009.
[35] A. V. Carazo, Micromechatronics, inc. website. http://www. mmech.com/transformers/dc-dc-piezo-converter. Date accessed 6-1-18.
[36] S. R. Anton and H. A. Sodano, A review of power harvesting using piezoelectric materials 2003-2006, Smart Materials and Structures, vol. 16, pp. R1R21, 2007.
[37] H. E. Soisson, Instrumentation in Industry. Wiley, 1975.
[38] W. G. Cady, Electroelastic and pyroelectric phenomena, International Critical Tables, pp. 207212, 1929.
[39] B. Ertug, The overview of the electrical properties of barium titanate, American Journal of Engineering Research, vol. 2, no. 8, pp. 17, 2013.
[40] W. C. Röntgen, Pyro und piezoelektrische untersuchungen, Annalen der Physik, vol. 350, pp. 737800, 1914.
[41] https://scientech-inc.com/categories/ laser-power-measurement.html. Date accessed 6-1-18.
[42] R. W. Boyd, Nonlinear Optics. Academic press, 2003.
[43] S. R. Hoh, Conversion of thermal to electrical energy with ferroelectric materials, Proceedings of the IEEE, vol. 51, pp. 838845, 1963.
[44] H. Fritzsche, Toward understanding the photoinduced changes in chalcogenide glasses, Semiconductors, vol. 32, no. 8, pp. 850856, 1998. 358 REFERENCES [45] V. K. Tikhomirov, Photoinduced eects in undoped and rareearth doped chalcogenide glasses, review, Journal of Non-crystalline Solids, vol. 256, pp. 328336, 1999.
[46] G. Baym, Lectures on Quantum Mechanics. Addison Wesley, 1990.
[47] N. Cohen, Fractal antenna applications in wireless telecommunication, Electronics Industries Forum of New England, pp. 4349, 1997.
[48] D. H. Werner and S. Ganguly, An overview of fractal antenna engineering research, IEEE Antennas and Propagation Magazine, vol. 45, pp. 3858, Feb. 2003.
[49] E. A. Wol, Antenna Analysis. Wiley, 1966.
[50] S. H. Ward, ARRL Antenna Book, 22 ed. ARRL, 2012.
[51] P. S. Carney and J. C. Schotland, Near-eld tomography, Inside Out: Inverse Problems and Their Applications, vol. 47, pp. 133168, 2003.
[52] T. O'Laughlin, The ELF is here, Popular Communications, pp. 10 13, April 1988.
[53] B. Villeneuve, ELF Station Republic, MI. http://ss.sites.mtu. edu/mhugl/2015/10/10/elf-sta-republic-mi/, 2015.
[54] R. S. Carson, Radio Communication Concepts, Analog. Wiley, 1990.
[55] R. Wallace, Antenna selection guide, TI Application Note AN058, 2010.
[56] R. Lewallen. http://www.eznec.com. Date accessed 6-1-18.
[57] Hall eect sensing and application. http://sensing.honeywell. com/index.php?ci_id=47847. Date accessed 6-1-18.
[58] D. J. Epstein, Permeability, Dielectric Materials and Applications, ed. A. R. von Hippel, pp. 122134, 1954.
[59] B. Jeckelmann and B. Jeanneret, The quantum Hall eect as an electrical resistance standard, Reports on Progress in Physics, vol. 64, pp. 16031655, 2001.
[60] J. O. Bockris and S. Srinivasan, Fuel Cells Their Electrochemistry. McGraw Hill, 1969. REFERENCES 359 [61] B. D. Iverson and S. Garimella, Recent advances in microscale pumping technologies: a review and evaluation, Birck and NCN Publications, vol. 81, 2008. http://docs.lib.purdue.edu/nanopub/81.
[62] J. de Vicente, D. J. Klingenberg, and R. Hidalgo-Alvarez, Magnetorheological uids a review, Soft Matter, vol. 7, pp. 37013711, 2011.
[63] K. von Klitzing, G. Dorda, and M. Pepper, New method for highaccuracy determination of the ne-structure constant based on quantized Hall resistance, Physical Review Letters, vol. 45, no. 6, pp. 494 498, 1980.
[64] D. C. Tsui, H. L. Störmer, and A. C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Physical Review Letters, vol. 48, no. 22, pp. 15591562, 1982.
[65] T. Chakaraborty and K. von Klitzing, Taking stock of the quantum Hall eects: Thirty years on, arXiv preprint:1102.5250, 2011. https://arxiv.org/pdf/1102.5250.pdf.
[66] A turning point for humanity: redening the world's measurement system. https://www.nist.gov/si-redefinition/ turning-point-humanity-redefining-worlds-measurement-system. Date accessed 6-25-18.
[67] E. Bellini, Global installed PV capaicty exceeds 300GW, IEA PVPS, PV magazine, 2017.
[68] A. Thompson and B. N. Taylor, Guide for the Use of the International System of Units. 2008.
[69] D. M. Chapin, How to make solar cells, Radio Electronics, pp. 89 94, Mar. 1960.
[70] A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.1), [Online]. Available: http:// physics.nist.gov/asd [2014, May 14]. National Institute of Standards and Technology, Gaithersburg, MD.
[71] C. Downs and T. E. Vandervelde, Progress in infrared photodetectors since 2000, Sensors, vol. 13, no. 4, 2013.
[72] S. Graham, Remote sensing, 1999. https://earthobservatory. nasa.gov/Features/RemoteSensing/remote.php. 360 REFERENCES [73] M. G. Thomas, H. N. Post, and R. DeBlasio, Photovoltaic systems an end-of-millennium review, Progress in Photovoltaics Research and Applications, vol. 7, pp. 119, 1999.
[74] http://www.nrel.gov/learning/re_photovoltaics.html. Date accessed 9-6-12.
[75] http://www.mit.edu/~6.777/matprops/ito.htm. Date accessed 6- 1-18.
[76] J. J. Wysocki and P. Rappaport, Eect of temperature on photovoltaic solar energy conversion, Journal of Applied Physics, vol. 31, p. 571, Mar. 1960.
[77] S. Kurtz, D. Levi, and K. Emery. https://www.nrel.gov/pv/ assets/images/efficiency-chart.png, 2017.
[78] L. E. Chaar, L. A. Lamont, and N. E. Zein, Review of photovoltaic technologies, Renewable and Sustainable Energy Reviews, vol. 15, pp. 21652175, 2011.
[79] B. Kippelen and J. L. Bredas, Organic photovoltaics, Energy and Environmental Science, vol. 2, 2009.
[80] The 2009 Nobel Prize in Physics. https://www.nobelprize.org/ nobel_prizes/physics/laureates/2009/press.html, 2009.
[81] http://hyperphysics.phy-astr.gsu.edu/hbase/vision/ rodcone.html. Date accessed 6-1-18.
[82] Hamamatsu infrared detectors, selection guide. https://www. hamamatsu.com/resources/pdf/ssd/infrared_kird0001e.pdf, 2018. Date accessed 6-15-18.
[83] S. M. Sze, Physics of Semiconductor Devices. Wiley, 1969.
[84] W. T. Silfvast, Laser Fundamentals. Cambridge University press, 1996.
[85] D. Kule. https://en.wikipedia.org/wiki/File:Black_body.svg. Date accessed 6-10-18.
[86] J. T. Verdeyen, Laser Electronics. Prentice Hall, 1995.
[87] J. D. Cobine, Gaseous Conductors. Dover, 1958. REFERENCES 361 [88] M. F. Gendre, Two centuries of electric light source innovations. http://www.einlightred.tue.nl/lightsources/history/ light_history.pdf. Date accessed 6-1-18.
[89] J. B. Calvert. http://www.physics.csbsju.edu/370/jcalvert/ dischg.htm.html, 2005.
[90] S. Nakamura, GaN-based blue green semiconductor lasers, IEEE Journal of Selected Topics in Quantum Electronics, vol. 3, pp. 435 442, 1997.
[91] C. P. B. Geroy, P. Roy, Organic light-emitting diode technology: Materials, devices, and display technologies, Polymer International, vol. 55, 2006.
[92] M. G. Bernard and G. Duraourg, Laser conditions in semiconductors, Physica Status Solidi, vol. 1, pp. 699703, 1961.
[93] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, Coherent light emission form GaAs junctions, Physical Review Letters, vol. 9, no. 9, pp. 366368, 1962.
[94] H. Nelson, Epitaxial growth from the liquid state and its application to the fabrication of tunnel and laser diodes, RCA Review, vol. 24, pp. 603615, 1963.
[95] A. Y. Cho and J. R. Arthur, Molecular beam epitaxy, Progress in Solid-State Chemistry, vol. 10, pp. 157191, 1975.
[96] R. D. Dupuis, P. D. Dapkus, N. Holonyak, E. A. Rezek, and R. Chin, Room-temperature laser operation of quantum well Ga1−xAlxAsGaAs laser diodes grown by metalorganic chemical vapor deposition, Applied Physics Letters, vol. 32, pp. 295297, 1978.
[97] M. N. Polyanskiy, Refractive index database. http: //refractiveindex.info/?shelf=main&book=GaAs&page=Skauli. Date accessed 6-1-18.
[98] H. Kressel and H. Nelson, Close-connement gallium arsenide pn junction lasers with reduced optical loss at room temperature, RCA Review, vol. 30, pp. 106113, 1969.
[99] V. A. Donchenko, Y. E. Geints, V. A. Kharenkov, and A. A. Zemlyanov, Nanostructured metal aggregate-assisted lasing in rhodamine 6G solutions, Optics and Photonics Journal, vol. 3, no. 8, 2013. http://file.scirp.org/Html/2-1190302_40925.htm. 362 REFERENCES [100] A. Ishibashi, II-VI blue-green laser diodes, IEEE Journal of Selected Topics in Quantum Electronics, vol. 1, pp. 741748, 1995.
[101] J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, Vertical-cavity surface-emitting lasers: design, growth, fabrication, and characterization, IEEE Journal of Quantum Electronics, vol. 27, pp. 13321346, 1991.
[102] M. J. Moran, H. N. Shapiro, D. D. Boettner, and M. B. Bailey, Fundamentals of Engineering Thermodynamics. Wiley, 2014.
[103] B. R. Munson, A. P. Rothmayer, T. H. Okiishi, and W. W. Huebsch, Fundamentals of Fluid Mechanics. Wiley, 2012.
[104] Azo Materials website, diamond properties, applications. http:// www.azom.com/properties.aspx?ArticleID=262, 2001.
[105] Azo Materials website, stainless steel grade 304 (uns s30400). http: //www.azom.com/properties.aspx?ArticleID=965, 2001.
[106] Azo Materials website, graphite. http://www.azom.com/ properties.aspx?ArticleID=1630, 2002.
[107] Azo Materials website, silicone rubber. http://www.azom.com/ properties.aspx?ArticleID=920, 2001.
[108] J. M. Smith, H. C. V. Ness, and M. Abbott, Introduction to Chemical Engineering Thermodynamics. McGraw Hill, 2000.
[109] M. J. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics. Wiley, 2004.
[110] P. H. Egli, Thermoelectricity. New York: John Wiley, 1958.
[111] S. G. Carr, Essential Linear Circuit Analysis. 2019. Preprint.
[112] G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics, Basic Principles and New Materials Developments. Germany: Springer, 2001.
[113] N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2 ed. Oxford: Clarendon Press, 1979.
[114] W. M. Haynes, CRC Handbook of Chemistry and Physics, 93 ed. CRC press, 2013. REFERENCES 363 [115] R. Venkatasubramanian, E. Silvola, T. Colpitts, and B. O'Quinn, Thin-lm thermoelectric devices with high room-temperature gure of merit, Nature, vol. 43, pp. 597602, Oct. 2001.
[116] H. Beyer, J. Numus, H. Bottner, A. Lambrecht, T. Roch, and G. Bauer, PbTe based superlattice structures with high thermoelectric e‑ciency, Applied Physics Letters, vol. 80, pp. 12151217, Feb. 2002.
[117] C. A. Gould, N. Y. A. Shammas, S. Grainger, and I. Taylor, A comprehensive review of thermoelectric technology, micro-electrical and power generation properties, Proceedings of the 26th International Conference on Microelectronics, pp. 978982, May 2008.
[118] S. B. Riat and X. Ma, Thermoelectrics a review of present and potential applications, Applied Thermal Engineering, vol. 23, pp. 913 935, 2003.
[119] G. Brumel, Curiosity's dirty little secret, Slate, 2012. http://www.slate.com/articles/health_and_science/ science/2012/08/mars_rover_curiosity_its_plutonium_ power_comes_courtesy_of_soviet_nukes_.html.
[120] Radioisotope power systems, power and thermal systems. https://rps.nasa.gov/power-and-thermal-systems/ power-systems/current/. Date accessed 6-10-18.
[121] B. C. Sales, B. C. Chakoumakos, and D. Mandrus, Thermoelectric properties of thallium-lled skutterudites, Physical Review B, vol. 61, pp. 24752481, Jan. 2000.
[122] A. Watcharapsorn, R. S. Feigelson, T. Caillat, A. Borshchevsky, G. Snyder, and J.-P. Fleurial, Preparation and thermoelectric properties of CeFe4As12, Journal of Applied Physics, vol. 91, no. 3, pp. 13441348, 2002.
[123] Apple product information sheet. https:// images.apple.com/legal/more-resources/docs/ apple-product-information-sheet.pdf, 2018. Date accessed 6-10-18.
[124] https://www.apple.com/iphone-x/specs/. Date accessed 6-10-18. 364 REFERENCES [125] D. Wright, Request for issuance of certicate of conformity. https://iaspub.epa.gov/otaqpub/displ...ile.jsp?docid= 39828&flag=1, 2016. The curb mass of the 2017 Tesla Model S AWD 90D is 2172 kg, and the weight of its battery is 580 kg.
[126] E. F. Kaye, Chairman's hoverboard press statement. https://www.cpsc.gov/about-cpsc/chai...elliot-f-kaye/ statements/chairmans-hoverboard-press-statement/, 2016.
[127] J. McCurry, Samsung blames two separate battery faults for Galaxy Note 7 res, The Guardian, Jan. 2017.
[128] T. Reddy, Linden's Handbook of Batteries, 4 ed. McGraw Hill, 2010.
[129] https://www.tesla.com/gigafactory. Date accessed 6-10-18.
[130] R. S. Mulliken, A new electroa‑nity scale, together with data on valence states and on valence ionization potentials and electron a‑nities, Journal of Chemical Physics, vol. 2, pp. 782793, Nov. 1934.
[131] R. G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry, Inorganic Chemistry, vol. 27, pp. 734740, 1988.
[132] H. O. Pritchard and F. H. Sumner, The application of electronic digital computers to molecular orbital problems II. A new approximation for hetero-atom systems, Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, vol. 235, pp. 136143, Apr. 1956.
[133] R. P. Iczkowski and J. L. Margrave, Electronegativity, Journal of the American Chemical Society, vol. 83, pp. 35473553, Sept. 1961.
[134] L. Pauling, The nature of the chemical bond IV. The energy of single bonds and the relative electronegativity of atoms, Journal of the American Chemical Society, vol. 54, pp. 35703583, 1932.
[135] W. Gordy, A new method of determining electronegativity from other atomic properties, Physical Review, vol. 69, pp. 604607, June 1946.
[136] R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989. REFERENCES 365 [137] S. G. Bratsch, Standard electrode potentials and temperature coe‑- cients in water at 298.15 K, Journal of Physical Chemical Reference Data, vol. 18, pp. 121, 1989. http://www.nist.gov/srd/upload/ jpcrd355.pdf.
[138] R. Shapiro, Oxidation-reduction potential, Water and Sewage Works, vol. 101, pp. 185188, Apr. 1954.
[139] C. E. Wallace. https://www.youtube.com/watch?v=RAFcZo8dTcU. Date accessed 6-1-18.
[140] C. K. Morehouse, R. Glicksman, and G. S. Lozier, Batteries, Proceedings of the IRE, pp. 14621483, 1958.
[141] https://www.energy.gov/eere/fuelcells/ fuel-cell-animation. Date accessed 6-1-18.
[142] Overview of battery technologies for MEMS applications, MEMS Journal, 2011. http://www.memsjournal.com/2011/02/ overview-of-battery-technologies-for-mems-applications-. html.
[143] http://www.frontedgetechnology.com/gen.htm. Date accessed 6- 1-18.
[144] Polaroid p100 polapulse/powerburst battery. http://users.rcn. com/fcohen/P100.htm. Date accessed 6-1-18.
[145] http://en.wikipedia.org/wiki/Instant_film. Date accessed 6- 1-18.
[146] Energizer nickel metal hydride handbook and application manual, 2001.
[147] Energizer nickel metal hydride handbook and application manual. http://data.energizer.com/PDFs/nickelmetalhydride_ appman.pdf, 2010.
[148] P. J. Dalton, International space station nickel hydrogen batteries approach 3 year on orbit mark. https://ntrs.nasa.gov/archive/ nasa/casi.ntrs.nasa.gov/20050215412.pdf. Date accessed 6-10- 18.
[149] http://www.eaglepicher.com/ips-2/ medical-power-technology. Date accessed 6-1-18. 366 REFERENCES [150] J. P. Owejan, T. A. Trabold, D. L. Jacobson, M. Arif, and S. G. Kandlikar, Eects of ow eld diusion layer properties on water accumulation in a pem fuel cell, International Journal of Hydrogen Energy, vol. 32, pp. 44894502, 2007.
[151] S. O. Farwell, D. R. Gage, and R. A. Kagel, Current status of prominent selective gas chromatographic detectors: a critical assessment, Journal of Chromatographic Science, vol. 19, 1981.
[152] Background on smoke detectors. https://www.nrc.gov/ reading-rm/doc-collections/fact-sheets/smoke-detectors. html. Date accessed 6-1-18.
[153] http://www.landauer.com/Industry/Products/Dosimeters/ Dosimeters.aspx. Date accessed 6-1-18.
[154] http://www.perkinelmer.co.uk/product/ tri-carb-4910tr-110-v-a491000. Date accessed 6-1-18.
[155] C. D. F. Massaad, T. M. Lejeune, The up and down bobbing of human walking, Journal of Physiology, vol. 582, pp. 789799, 2007.
[156] A. J. Bur, Measurements of the dynamic piezoelectric properties of bone as a function of temperature and humidity, Journal of Biomechanics, vol. 9, pp. 495507, 1976.
[157] T. J. Anastasio, Tutorial on Neural System Modeling. Sinauer, 2009.
[158] The principles of nerve cell communication, Alcohol Health and Research World, vol. 21, pp. 107108, 1997. https://pubs.niaaa.nih. gov/publications/arh21-2/107.pdf.
[159] H. A. Stone, A. D. Stroock, and A. Ajdari, Engineering ows in small devices: Microuidics towards a lab-on-a-chip, Annual Review of Fluid Mechanics, vol. 36, pp. 381411, 2004.
[160] P. Gravesen, J. Branebjerg, and O. S. Jensen, Microuidics - a review, Journal of Micromechanical Microengineering, vol. 3, pp. 168 182, 2004.
[161] P. K. Wong, T. Wang, J. H. Deval, and C. Ho, Electrokinetics in micro devices for biotechnology applications, IEEE ASME Transactions on Mechatronics, vol. 9, pp. 366377, June 2004.
[162] A. Tipler, Physics, 3 ed., Vol. 1. Worth Publishing, 1991. REFERENCES 367 [163] B. V. Brunt, The Calculus of Variations. Springer, 2002.
[164] P. J. Olver, Applications of Lie Groups To Dierential Equations. New York: Springer, 1986.
[165] E. Noether, Invariant variation problems, Transport Theory and Statistical Physics, vol. 1, no. 3, pp. 183207, 1971. English Translation.
[166] E. Noether, Invariant variation problems, Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen, MathematischPhysikalische Klasse, vol. 235, 1918.
[167] V. I. Arnol'd, Mathematical Methods of Classical Mechanics, 2 ed. Springer, 2010.
[168] C. L. Nachtigal and M. D. Martin, Instrumentation and Control. Wiley, 1990.
[169] http://hyperphysics.phy-astr.gsu.edu/hbase/electric/ watcir.html. Date accessed 6-1-18.
[170] P. Salamon, B. Andresen, and R. S. Berry, Thermodynamics in - nite time. II potentials for nite-time processes, Physical Review A, vol. 15, no. 5, 1977.
[171] P. Salamon, B. Andresen, and R. S. Berry, Minimum entropy production and the optimization of heat engines, Physical Review A, vol. 21, no. 6, 1980.
[172] R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke, Electronegativity: the density functional viewpoint, Journal of Chemical Physics, vol. 68, pp. 38013808, Apr. 1978.
[173] Thomas, The calculation of atomic elds, Proceedings of the Cambridge Philosophical Society, vol. 23, pp. 542548, 1927.
[174] E. Fermi, Collected Papers, Vol. 1. Chicago: University of Chicago Press, 1962. See the article "Über die Anwendung der statistischen Methode auf die probleme des Atombaues, " 1928, the article "Un metodo statistico per la determinazione di alcune proprieta dell'atome," 1927, and the article "Zur Quantelung des idealen einatomigen gases," 1926. 368 REFERENCES [175] G. K. Woodgate, Elementary Atomic Structure, 2nd ed. Oxford, 1980.
[176] S. J. A. Malham, An Introduction to Lagrangian Mechanics, Lecture Notes. 2016. http://www.macs.hw.ac.uk/~simonm/mechanics. pdf.
[177] E. Fermi, Un metodo statistico per la determinazione di alcune prioreta dell'atome, Rendicondi Accademia Nazionale de Lincei, vol. 6, no. 32, pp. 602607, 1927.
[178] http://www.abinit.org/. Date accessed 6-1-18.
[179] http://departments.icmab.es/leem/siesta/. Date accessed 6-1- 18.
[180] H. Krutter, Numerical integration of the Thomas-Fermi equation from zero to innity, Journal of Computational Physics, vol. 47, pp. 308312, 1982.
[181] N. H. Ibragimov, Lie Group Analysis of Dierential Equations, Vol. 3. CRC press, 1996.
[182] L. Gagnon and P. Winternitz, Lie symmetries of a generalized nonlinear Schrödinger equation: I. the symmetry group and its subgroups, Journal of Physics A, vol. 21, pp. 14931511, 1988.
[183] E. G. Kalnins and W. Miller, Lie theory and separation of variables 5, Journal of Mathematical Physics, vol. 15, pp. 17281738, 1974.
[184] V. I. Fushchich and A. G. Nikitin, New and old symmetries of the Maxwell and Dirac equations, Soviet Journal of Particles and Nuclei, vol. 14, pp. 122, Jan. 1983.
[185] W. I. Fushchich and A. G. Nikitin, Symmetries of Maxwell's Equations. Boston, MA: D. Reidel Publishing, 1987.
[186] A. R. Chowdhury and P. K. Chanda, On the Lie symmetry approach to small's equation of nonlinear optics, Journal of Physics A, vol. 18, pp. 117121, 1985.
[187] J. J. Sakurai, Modern Quantum Mechanics. Massachusetts: AddisonWesley Publishing Company, 1994.
[188] M. Lutzky, Dynamical symmetries and conserved quantities, Journal of Physics A, vol. 12, no. 7, pp. 973981, 1979. REFERENCES 369 [189] L. V. Ovsiannikov, Group Analysis of Dierential Equations. New York, NY: Academic Press, 1982.
[190] P. G. L. Leach, R. Maartens, and S. D. Maharaj, Self similar solutions of the generalized Emden Fowler equation, International Journal of Nonlinear Mechanics, vol. 27, pp. 575582, 1992.
[191] R. L. Anderson and S. M. Davison, A generalization of Lie's counting theorem for second order ordinary dierential equations, Journal of Mathematical Analysis and Applications, vol. 48, pp. 301315, 1974.
[192] E. A. Desloge and R. I. Karch, Noether's theorem in classical mechanics, American Journal of Physics, vol. 45, pp. 336339, Apr. 1977.
[193] http://www.nist.gov/pml/wmd/metric/prefixes.cfm. Date accessed 6-1-18.
[194] R. P. Feynman, Feynman Lectures on Physics. MA: Addison Wesley Publishing Company, 1963.
[195] F. R. Whitt and D. G. Wilson, Bicycling Science. MIT, 1974.
[196] R. S. Shallenberger, Sugar Chemistry. Connecticut: Avi Publishing Company, 1975.