Skip to main content
Engineering LibreTexts

1.2: Examples- Voltage and Current Dividers

  • Page ID
    55507
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Figure 6 may be used as an example to show how we use all of this. See that it has one loop and three nodes. Around the loop, KVL is:

    \(\ V_{s}-v_{1}-v_{2}=0\)

    At the upper right- hand node, we have, by KCL:

    \(\ i_{1}-i_{2}=0\)

    The constitutive relations imposed by the resistances are:

    \(\ \begin{array}{l}
    v_{1}=R_{1} i_{1} \\
    v_{2}=R_{2} i_{2}
    \end{array}\)

    Combining these, we find that:

    \(\ V_{s}=\left(R_{1}+R_{2}\right) i_{1}\)

    We may solve for the voltage across, say, R2, to obtain the so-called voltage divider relationship:

    \(\ v_{2}=V_{s} \frac{R_{2}}{R_{1}+R_{2}}\label{4}\)

    Screen Shot 2021-07-18 at 8.30.03 PM.pngFigure 6: Voltage Divider

    A second example is illustrated by Figure 7. Here, KCL at the top node yields:

    \(\ I_{s}-i_{1}-i_{2}=0\)

    And KVL, written around the loop that has the two resistances, is:

    \(\ R_{1} i_{1}-R_{2} i_{2}=0\)

    Combining these together, we have the current divider relationship:

    \[\ i_{2}=I_{s} \frac{R_{1}}{R_{1}+R_{2}}\label{5} \]

    Once we have derived the voltage and current divider relationships, we can use them as part of our “intellectual toolkit”, because they will always be true.

    Screen Shot 2021-07-19 at 10.02.08 AM.pngFigure 7: Current Divider

    This page titled 1.2: Examples- Voltage and Current Dividers is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James Kirtley (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.