Skip to main content
Engineering LibreTexts

1.9: Linear Combinations of Waves

  • Page ID
    49372
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Next, we consider the combinations of different complex exponential functions. For example, in Figure 1.9.1 we plot a wavefunction that could describe an electron that equiprobable at position \(x_{1}\) and position \(x_{2}\). The k-space representation is simply the superposition of two complex exponential functions corresponding to \(x_{1}\) and \(x_{2}\).\(^{†}\)

    \[ \psi(x)=c_{1}\delta(x-x_{1})+c_{2}(x-x_{2}) \Leftrightarrow A(\omega) = c_{1}e^{-ikx_{1}}+c_{2}e^{-ikx_{2}} \nonumber \]

    Screenshot 2021-04-14 at 09.40.19.png
    Figure \(\PageIndex{1}\): The k-space wavefunction corresponding to two positions \(x_{1}\) and \(x_{2}\) is simply the superposition of the k-space representations of \(\delta(x-x_{1})\) and \(\delta(x-x_{2})\).

    We can also generalize to an arbitrary distribution of positions, \(\psi(x)\). If \(\psi(x)\) describes an electron, for example, the probability that the electron is located at position x is \(|\psi(x)|^{2}\). Thus, in k-space the electron is described by the sum of complex exponentials \(e^{-ikx}\) each oscillating in k-space and weighted by amplitude \(\psi(x)\).

    \[ A(k)=\int^{+\infty}_{-\infty}\psi(x)e^{-ikx}dx \nonumber \]

    You may recognize this from 6.003 as a Fourier transform. Similarly, the inverse transform is

    \[ \psi(x)=\frac{1}{2\pi}\int^{+\infty}_{-\infty}A(k)e^{ikx}dk \nonumber \]

    To convert between time and angular frequency, use

    \[ A(\omega) =\int^{+\infty}_{-\infty} \psi(t)e^{i\omega t}dt \nonumber \]

    and

    \[ \psi(t)=\frac{1}{2\pi}\int^{+\infty}_{-\infty} A(\omega)e^{-i\omega t}d\omega \nonumber \]

    Note that the factors of \(\frac{1}{2\pi}\) are present each time you integrate with respect to k or \(\omega\). Note also that when converting between complex exponentials and delta functions, the following identity is useful:

    \[ 2\pi\delta(u)=\int^{+\infty}_{-\infty} \text{exp}[iux]dx \nonumber \]

    \(^{†}\)Note that this wave function is not actually normalizable.


    This page titled 1.9: Linear Combinations of Waves is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marc Baldo (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.