Skip to main content
Engineering LibreTexts

2.11: Periodic Boundary Conditions in 2-D

  • Page ID
    50141
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Applying periodic boundary conditions to 2d materials follows the same principles as in 1d.

    Let's assume that the long axes of the quantum well are aligned with the x and y axes, and that the dimensions of the quantum well are \(L_{x} \times L_{y}\). When we apply periodic boundary conditions, the infinite system is periodic on both the x-axis (period \(L_{x}\)) and the y-axis (period \(L_{y}\)).

    First, let's consider periodicity on the x-axis; see Figure 2.11.1.

    Screenshot 2021-04-15 at 22.37.40.png
    Figure \(\PageIndex{1}\): The quantum well, assuming periodic boundary conditions on the x-axis.

    On the x-axis the wavefunction is a plane wave.

    \[ \psi_{x}(x)=\text{exp}[ik_{x}x] \nonumber \]

    Under periodic boundary conditions, only discrete \(k_{x}\) values are allowed

    \[ k_{x}=n_{x}\frac{2\pi}{L_{x}} \nonumber \]

    where \(n_{x}\) is an integer.

    Similarly, for periodicity on the y-axis:

    Screenshot 2021-04-15 at 22.40.33.png
    Figure \(\PageIndex{2}\): The quantum well, assuming periodic boundary conditions on the y-axis.

    the wavefunction on the y-axis

    \[ \psi_{y}y=\text{exp}[ik_{y}y] \nonumber \]

    is restricted to discrete \(k_{y}\) values:

    \[ k_{y}=n_{y}\frac{2\pi}{L_{y}} \nonumber \]

    where \(n_{y}\) is an integer.

    Thus, in k-space the allowed k-states are spaced regularly, with:

    \[ \Delta k_{x}=\frac{2\pi}{L_{x}}, \Delta k_{y} = \frac{2\pi}{L_{y}} \nonumber \]

    Overall, the area occupied in k-space per k-state is:

    \[ \Delta k^{2} = \Delta k_{x}\Delta k_{y} =\frac{2\pi}{L_{x}}\frac{2\pi}{L_{y}}= \frac{4\pi^{2}}{A} \nonumber \]

    where A is the area of the quantum well.

    Screenshot 2021-04-15 at 22.46.41.png
    Figure \(\PageIndex{3}\): In k-space only certain discrete values are allowed. Each state occupies an area of \(4\pi^{2}/L_{x}L_{y}\).

    This page titled 2.11: Periodic Boundary Conditions in 2-D is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marc Baldo (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.