4.12: References
- Page ID
- 41044
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)[1] C. Holloway and G. A. Hufford, “Internal inductance and conductor loss associated with the ground plane of a microstrip line,” IEEE Trans. on Electromagnetic Compatibility, vol. 39, no. 2, pp. 73–78, May 1997.
[2] G. Ponchak and A. Downey, “Characterization of thin film microstrip lines on polyimide,” IEEE Trans. on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, vol. 21, no. 2, pp. 171–176, May 1998.
[3] Hai-Young Lee and T. Itoh, “Phenomenological loss equivalence method for planar quasitem transmission lines with a thin normal conductor or superconductor,” IEEE Trans. on Microwave Theory and Techniques, vol. 37, no. 12, pp. 1904–1909, Dec. 1989.
[4] W. Heinrich, “Quasi-tem description of MMIC coplanar lines including conductor-loss effects,” IEEE Trans. on Microwave Theory and Techniques, vol. 41, no. 1, pp. 45–52, Jan. 1993.
[5] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 7th ed. Cambridge University Press, 1999.
[6] K. Coperich, J. Morsey, V. Okhmatovski, A. Cangellaris, and A. Ruehli, “Systematic development of transmission-line models for interconnects with frequency-dependent losses,” IEEE Trans. on Microwave Theory and Techniques, vol. 49, no. 10, pp. 1677–1685, Oct. 2001.
[7] W. Heinrich, “Full-wave analysis of conductor losses on MMIC transmission lines,” IEEE Trans. on Microwave Theory and Techniques, vol. 38, no. 10, pp. 1468–1472, Oct. 1990.
[8] R. Faraji-Dana and Y. Chow, “The current distribution and ac resistance of a microstrip structure,” IEEE Trans. on Microwave Theory and Techniques, vol. 38, no. 9, pp. 1268–1277, Sep. 1990.
[9] A. Djordjevic and T. Sarkar, “Closed-form formulas for frequency-dependent resistance and inductance per unit length of microstrip and strip transmission lines,” IEEE Trans. on Microwave Theory and Techniques,, vol. 42, no. 2, pp. 241–248, Feb. 1994.
[10] B. Biswas, A. Glasser, S. Lipa, M. Steer, P. Franzon, D. Griffis, and P. Russell, “Experimental electrical characterization of on-chip interconnects,” in IEEE 6th Topical Meeting on Electrical Performance of Electronic Packaging, 1997, pp. 57–59.
[11] A. Deutsch, R. Krabbenhoft, K. Melde, C. Surovic, G. Katopis, G. Kopcsay, Z. Zhou, Z. Chen, Y. Kwark, T.-M. Winkel, X. Gu, and T. Standaert, “Application of the short-pulse propagation technique for broadband characterization of pcb and other interconnect technologies,” IEEE Trans. on Electromagnetic Compatibility, vol. 52, no. 2, pp. 266–287, May 2010.
[12] T. Edwards and M. Steer, Foundations for Microstrip Circuit Design. John Wiley & Sons, 2016.
[13] G. Vendelin, “Limitations on stripline Q,” Microwave Journal, pp. 63–69, 1970.
[14] H. Hasegawa, M. Furukawa, and H. Yanai, “Properties of microstrip line on si-sio2 system,” IEEE Trans. on Microwave Theory and Techniques, vol. 19, no. 11, pp. 869–881, Nov. 1971.
[15] D. Jager, “Slow-wave propagation along variable schottky-contact microstrip line,” IEEE Trans. on Microwave Theory and Techniques, vol. 24, no. 9, pp. 566–573, Sep. 1976.
[16] Y. K. et al, “Quasi-tem analysis of ”slowwave” mode propagation on coplanar microstructure mis transmission lines,” IEEE Trans. on Microwave Theory and Techniques, vol. 35, no. 6, pp. 545–551, Jun. 1987.