Skip to main content
Engineering LibreTexts

12.2: Heat Engine

  • Page ID
    50230
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The magnetic-dipole system we are considering is shown in Figure 12.1, where there are two environments at different temperatures, and the interaction of each with the system can be controlled by having the barriers either present or not (shown in the Figure as present). Although Figure 12.1 shows two dipoles in the system, the analysis here works with only one dipole, or with more than two, so long as there are many fewer dipoles in the system than in either environment.

    Now let us rewrite the formulas from Chapter 11 with the use of \(\beta\) replaced by temperature. Thus Equations 11.8 to 11.12 become

    K \(^{\circ}\)C \(^{\circ}\)F \(^{\circ}\)R \(k_BT = \frac{1}{\beta}\) (J) \(\beta (J^{−1})\)
    Absolute Zero 0 -273.15 -459.67 0 0 \(\infty\)
    Outer Space (approx) 2.7 -270 -455 4.9 3.73 × 10\(^{−23}\) 2.68 × 10\(^{22}\)
    Liquid Helium bp 4.22 -268.93 -452.07 7.6 5.83 × 10\(^{−23}\) 1.72 × 10\(^{22}\)
    Liquid Nitrogen bp 77.34 -195.81 -320.46 139.2 1.07 × 10\(^{−21}\) 9.36 × 10\{^20}\)
    Water mp 273.15 0.00 32.00 491.67 3.73 × 10\(^{−21}\) 2.65 × 10\(^{20}\)
    Room Temperature (approx) 290 17 62 520 4.00 × 10\(^{−21}\) 2.50 × 10\(^{20}\)
    Water bp 373.15 100.00 212.00 671.67 5.15 × 10\(^{−21}\) 1.94 × 10\(^{20}\)
    Table 12.1: Various temperatures of interest (bp = boiling point, mp = melting point)

    Figure 12.1: Dipole moment example. (Each dipole can be either up or down.)

    \[\begin{align*}
    1 &=\sum_{i} p_{i} \tag{12.4}\\
    E &=\sum_{i} p_{i} E_{i} \tag{12.5}\\
    S &=k_{B} \sum_{i} p_{i} \ln \left(\frac{1}{p_{i}}\right) \tag{12.6}\\
    p_{i} &=e^{-\alpha} e^{-E_{i} / k_{B} T} \tag{12.7}\\
    \alpha &=\ln \left(\sum_{i} e^{-E_{i} / k_{B} T}\right) \\
    &=\frac{S}{k_{B}}-\frac{E}{k_{B} T} \tag{12.8}
    \end{align*} \nonumber \]

    The differential formulas from Chapter 11 for the case of the dipole model where each state has an energy proportional to H, Equations 11.30 to 11.36 become

    \(\begin{align*}
    0 &=\sum_{i} d p_{i} \tag{12.9}\\
    d E &=\sum_{i} E_{i}(H) d p_{i}+\left(\frac{E}{H}\right) d H \tag{12.10}\\
    T d S &=d E-\left(\frac{E}{H}\right) d H \tag{12.11}\\
    d \alpha &=\left(\frac{E}{k_{B} T}\right)\left[\left(\frac{1}{T}\right) d T-\left(\frac{1}{H}\right) d H\right] \tag{12.12}\\
    d p_{i} &=p_{i}\left[\frac{E_{i}(H)-E}{k_{B} T}\right]\left[\left(\frac{1}{T}\right) d T-\left(\frac{1}{H}\right) d H\right] \tag{12.13} \\
    d E &=\left[\sum_{i} p_{i}\left(E_{i}(H)-E\right)^{2}\right]\left(\frac{1}{k_{B} T}\right)\left[\left(\frac{1}{T}\right) d T-\left(\frac{1}{H}\right) d H\right]+\left(\frac{E}{H}\right) d H \tag{12.14}\\
    T d S &=\left[\sum_{i} p_{i}\left(E_{i}(H)-E\right)^{2}\right]\left(\frac{1}{k_{B} T}\right)\left[\left(\frac{1}{T}\right) d T-\left(\frac{1}{H}\right) d H\right] \tag{12.15}
    \end{align*}\)

    and the change in energy can be attributed to the effects of work \(dw\) and heat \(dq\)

    \[\begin{align*}
    d w&=\left(\frac{E}{H}\right) d H \tag{12.16}\\
    d q&=\sum_{i} E_{i}(H) d p_{i} \\
    &=T d S \tag{12.17}
    \end{align*} \nonumber \]


    This page titled 12.2: Heat Engine is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Paul Penfield, Jr. (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.