Skip to main content
Engineering LibreTexts

9.3: Common Discrete Time Fourier Transforms

  • Page ID
    22895
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Common DTFTs

    Table \(\PageIndex{1}\)
    Time Domain \(x[n]\) Frequency Domain \(X(w)\) Notes
    \(\delta[n]\) \(1\)
    \(\delta[n-M]\) \(e^{−j w M}\) integer \(M\)
    \(\sum_{m=-\infty}^{\infty} \delta[n-M m]\) \(\sum_{m=-\infty}^{\infty} e^{-j w M m}=\frac{1}{M} \sum_{k=-\infty}^{\infty} \delta\left(\frac{w}{2 \pi}-\frac{k}{M}\right)\) integer \(M\)
    \(e^{−jan}\) \(2 \pi \delta (w+a)\) real number \(a\)
    \(u[n]\) \(\frac{1}{1-e^{-j w}}+\sum_{k=-\infty}^{\infty} \pi \delta(w+2 \pi k)\)
    \(a^n u(n)\) \(\frac{1}{1-a e^{-j w}}\) if \(|a|<1\)
    \(\cos(an)\) \(\pi[\delta(w-a)+\delta(w+a)]\) real number \(a\)
    \(W \cdot \operatorname{sinc}^{2}(W n)\) \(\operatorname{tri}\left(\frac{w}{2 \pi W}\right)\) real number \(W\), \(0<W≤0.50\)
    \(W \cdot \operatorname{sinc}[W(n+a)]\) \(\operatorname{rect}\left(\frac{w}{2 \pi W}\right) \cdot e^{j a w}\) real numbers \(W\), \(a\) \(0<W≤1\)
    \(\operatorname{rect}\left[\frac{(n-M / 2)}{M}\right]\) \(\frac{\sin [w(M+1) / 2]}{\sin (w / 2)} e^{-j w M / 2}\) integer \(M\)
    \(\frac{W}{(n+a)}\{\cos [\pi W(n+a)]-\operatorname{sinc}[W(n+a)]\}\) \(j w \cdot \operatorname{rect}\left(\frac{w}{\pi W}\right) e^{j} a w\) real numbers \(W\), \(a\) \(0<W≤1\)
    \(\frac{1}{\pi n^{2}}\left[(-1)^{n}-1\right]\) \(|w|\)
    \(\left\{\begin{array}{ll}
    0 & n=0 \\
    \frac{(-1)^{n}}{n} & \text { elsewhere }
    \end{array}\right.\)
    \(jw\) differentiator filter
    \(\left\{\begin{array}{ll}
    0 & \quad n \text { odd } \\
    \frac{2}{\pi n} & \quad n \text { even }
    \end{array}\right.\)
    \(\left\{\begin{array}{cc}
    j & w<0 \\
    0 & w=0 \\
    -j & w>0
    \end{array}\right.\)
    Hilbert Transform

    Notes

    rect(\(t\)) is the rectangle function for arbitrary real-valued \(t\).

    \[\operatorname{rect}(\mathrm{t})=\left\{\begin{array}{ll}
    0 & \text { if }|t|>1 / 2 \\
    1 / 2 & \text { if }|t|=1 / 2 \\
    1 & \text { if }|t|<1 / 2
    \end{array}\right. \nonumber \]

    tri(\(t\)) is the triangle function for arbitrary real-valued \(t\).

    \[\operatorname{tri}(\mathrm{t})=\left\{\begin{array}{ll}
    1+t & \text { if }-1 \leq t \leq 0 \\
    1-t & \text { if } 0<t \leq 1 \\
    0 & \text { otherwise }
    \end{array}\right. \nonumber \]


    This page titled 9.3: Common Discrete Time Fourier Transforms is shared under a CC BY license and was authored, remixed, and/or curated by Richard Baraniuk et al..

    • Was this article helpful?