15.8: Types of Bases
- Page ID
- 23198
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Normalized Basis
Definition: Normalized Basis
A basis \(\left\{b_{i}\right\}\) where each \(b_i\) has unit norm
\[\left\|b_{i}\right\|=1, \quad i \in \mathbb{Z} \nonumber \]
Note
The concept of basis applies to all vector spaces (Section 15.2). The concept of normalized basis applies only to normed spaces (Section 15.3).
You can always normalize a basis: just multiply each basis vector by a constant, such as \(\frac{1}{\left\|b_{i}\right\|}\)
Example \(\PageIndex{1}\)
We are given the following basis:
\[\left\{b_{0}, b_{1}\right\}=\left\{\left(\begin{array}{l}
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1
\end{array}\right)\right\} \nonumber \]
Normalized with \(\ell^{2}\) norm:
\[\begin{array}{c}
\tilde{b}_{0}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
1
\end{array}\right) \\
\tilde{b}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1
\end{array}\right)
\end{array} \nonumber \]
Normalized with \(\ell^{1}\) norm:
\[\begin{array}{c}
\tilde{b}_{0}=\frac{1}{2}\left(\begin{array}{c}
1 \\
1
\end{array}\right) \\
\tilde{b}_{1}=\frac{1}{2}\left(\begin{array}{c}
1 \\
-1
\end{array}\right)
\end{array} \nonumber \]
Orthogonal Basis
- Orthogonal Basis
- a basis {bi}b i in which the elements are mutually orthogonal
∀i,i≠j:(⟨bi,bj⟩=0)i i j b i b j 0
Definition: Orthogonal Basis
A basis \(\left\{b_{i}\right\}\) in which the elements are mutually orthogonal
\[\left\langle b_{i}, b_{j}\right\rangle=0, \quad i \neq j \nonumber \]
Note
The concept of orthogonal basis applies only to Hilbert Spaces (Section 15.4).
Example \(\PageIndex{2}\)
Standard basis for \(\mathbb{R}^2\), also referred to as \(\ell^{2}([0,1])\):
\[\begin{array}{l}
b_{0}=\left(\begin{array}{l}
1 \\
0
\end{array}\right) \\
b_{1}=\left(\begin{array}{l}
0 \\
1
\end{array}\right)
\end{array} \nonumber \]
\[\left\langle b_{0}, b_{1}\right\rangle=\sum_{i=0}^{1} b_{0}[i] b_{1}[i]=1 \times 0+0 \times 1=0 \nonumber \]
Example \(\PageIndex{3}\)
Now we have the following basis and relationship:
\[\left\{\left(\begin{array}{l}
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1
\end{array}\right)\right\}=\left\{h_{0}, h_{1}\right\} \nonumber \]
\[\left\langle h_{0}, h_{1}\right\rangle=1 \times 1+1 \times-1=0 \nonumber \]
Orthonormal Basis
Pulling the previous two sections (definitions) together, we arrive at the most important and useful basis type:
Definition: Orthonormal Basis
A basis that is both normalized and orthogonal
\[\left\|b_{i}\right\|=1, \quad i \in \mathbb{Z} \nonumber \]
\[\left\langle b_{i}, b_{j}\right\rangle \quad, \quad i \neq j \nonumber \]
Notation:
We can shorten these two statements into one:
\[\left\langle b_{i}, b_{j}\right\rangle=\delta_{i j} \nonumber \]
where
\[\delta_{i j}=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j
\end{array}\right. \nonumber \]
Where \(\delta_{i j}\) is referred to as the Kronecker delta function (Section 1.6) and is also often written as \(\delta[i-j]\).
Orthonormal Basis Example #1
\[\left\{b_{0}, b_{2}\right\}=\left\{\left(\begin{array}{l}
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1
\end{array}\right)\right\} \nonumber \]
Orthonormal Basis Example #2
\[\left\{b_{0}, b_{2}\right\}=\left\{\left(\begin{array}{l}
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1
\end{array}\right)\right\} \nonumber \]
Orthonormal Basis Example #3
\[\left\{b_{0}, b_{2}\right\}=\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1
\end{array}\right)\right\} \nonumber \]
Beauty of Orthonormal Bases
Orthonormal bases are very easy to deal with! If \(\left\{b_{i}\right\}\) is an orthonormal basis, we can write for any \(x\)
\[x=\sum_{i} \alpha_{i} b_{i} \nonumber \]
It is easy to find the \(\alpha_i\):
\[\begin{align}
\left\langle x, b_{i}\right\rangle &=\left\langle\sum_{k} \alpha_{k} b_{k}, b_{i}\right\rangle \nonumber \\
&=\sum_{k} \alpha_{k}\left\langle\left(b_{k}, b_{i}\right)\right\rangle
\end{align} \nonumber \]
where in the above equation we can use our knowledge of the delta function to reduce this equation:
\[\begin{array}{c}
\left\langle b_{k}, b_{i}\right\rangle=\delta_{i k}=\left\{\begin{array}{l}
1 \text { if } i=k \\
0 \text { if } i \neq k
\end{array}\right. \\
\left\langle x, b_{i}\right\rangle=\alpha_{i}
\end{array} \nonumber \]
Therefore, we can conclude the following important equation for \(x\):
\[x=\sum_{i}\left\langle\left(x, b_{i}\right)\right\rangle b_{i} \nonumber \]
The \(\alpha_i\)'s are easy to compute (no interaction between the \(b_i\)'s)
Example \(\PageIndex{4}\)
Given the following basis:
\[\left\{b_{0}, b_{1}\right\}=\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
1
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1
\end{array}\right)\right\} \nonumber \]
represent \(x=\left(\begin{array}{l}
3 \\
2
\end{array}\right)\)
Example \(\PageIndex{5}\): Slightly Modified Fourier Series
We are given the basis
\[\left.\left\{\frac{1}{\sqrt{T}} e^{j \omega_{0} n t}\right\}\right|_{n=-\infty} ^{\infty} \nonumber \]
on \(L^2([0,T])\) where \(T=\frac{2 \pi}{\omega_0}\).
\[f(t)=\sum_{n=-\infty}^{\infty}\left\langle\left(f, e^{j \omega_{0} n t}\right)\right\rangle e^{j \omega_{0} n t} \frac{1}{\sqrt{T}} \nonumber \]
Where we can calculate the above inner product in \(L^2\) as
\[\left\langle f, e^{j \omega_{0} n t}\right\rangle=\frac{1}{\sqrt{T}} \int_{0}^{T} f(t) \overline{e^{j \omega_{0} n t}} \mathrm{d} t=\frac{1}{\sqrt{T}} \int_{0}^{T} f(t) e^{-\left(j \omega_{0} n t\right)} \mathrm{d} t \nonumber \]
Orthonormal Basis Expansions in a Hilbert Space
Let \(\left\{b_{i}\right\}\) be an orthonormal basis for a Hilbert space \(H\). Then, for any \(x \in H\) we can write
\[x=\sum_{i} \alpha_{i} b_{i} \nonumber \]
where \(\alpha_{i}=\left\langle x, b_{i}\right\rangle\).
- "Analysis": decomposing \(x\) in term of the \(b_i\)
\[\alpha_{i}=\left\langle x, b_{i}\right\rangle \nonumber \]
- "Synthesis": building \(x\) up out of a weighted combination of the \(b_i\)
\[x=\sum_{i} \alpha_{i} b_{i} \nonumber \]