Skip to main content
Engineering LibreTexts

15.9: Crystal Systems

  • Page ID
    31579
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The rotational symmetry of a crystal places constraints on the shape of the conventional unit cell we choose to describe the structure. On this basis we divide all structures into one of 7 crystal systems. For example, for crystals with 4 fold symmetry it will always be possible to choose a unit cell that has a square base with a = b and γ = 90°:

    4-fold symmetry example

    There are 14 unique combinations of the 7 crystal systems with the possible types of primitive and non-primitive lattices. These are referred to as the 14 Bravais lattices.

    Crystal systems, lattices and symmetry elements

    Crystal System

    Defining Symmetry

    Unit Cell Geometry

     

    Triclinic

    Translational Only

    a≠b≠c; αβγ

    a

    Monoclinic

    A diad axis
    (parallel to [010])

    a≠b≠c; α=γ=90°; β>90°

    a

    Orthorhombic

    3 diads
    (each should be parallel to each axis)

    a≠b≠c; α=β=γ=90°

    a

    Trigonal

    For more information click here

    1 triad
    (parallel to [001])

    a=b≠c; α=β=90°;
    γ=120°
    ( or
    a=b=c;
    120° > α=β=γ ≠ 90°)

    a

    Hexagonal

    1 hexad (parallel to [001])

    a=b≠c; α=β=90°;
    γ=120°

    a

    Tetragonal

    One tetrad
    (parallel to the [001] vector)

    a=b≠c; α=β=γ=90°

    a

    Cubic

    4 triads
    (all parallel to <111> directions)

    a=b=c; α=β=γ=90°

    a

    Bravais Lattice Structures

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    And you can use the Wolfram Demonstration Project Viewer to look at the Bravais lattices

           


    This page titled 15.9: Crystal Systems is shared under a CC BY-NC-SA 2.0 license and was authored, remixed, and/or curated by Dissemination of IT for the Promotion of Materials Science (DoITPoMS) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?