20.3: Mathematical Representation of Reciprocal Lattice

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

We want reciprocal lattice vectors such that the reciprocal vector is the inverse in magnitude of the real vector and is normal to the planes separating the original vector.

So,

$|\mathbf{a} *|=\frac{1}{d_{100}}=\frac{1}{|\mathbf{a}| \cos \left(\gamma-\frac{\pi}{2}\right)}$

and

$\frac{\mathbf{a} *}{|\mathbf{a} *|}=\frac{\mathbf{b} \times \mathbf{c}}{|\mathbf{b} \times \mathbf{c}|}$

Therefore,

$\mathbf{a} *=\frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$

and similarly:

$\mathbf{b} *=\frac{\mathbf{c} \times \mathbf{a}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$

$\mathbf{c} *=\frac{\mathbf{a} \times \mathbf{b}}{\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}}$

Fourier Analysis of Periodic Potential

The periodic potential of a lattice is given by:

$U(\mathrm{r})=\sum_{k} U_{k} \exp (i 2 \pi \mathrm{K} \cdot \mathrm{r})$

where Uk is the coefficient of the potential, and r is a real position vector
However only values of K are allowed which are reciprocal lattice vectors (S).

Proof:

$U(\mathrm{r})=\sum_{S} U_{S} \exp (i 2 \pi \mathrm{S} \cdot \mathrm{r})$

since U(r) = U(r + R), where R is a lattice vector,

$\sum_{S} U_{S} \exp (i 2 \pi \mathrm{S} \cdot \mathrm{r})=\sum_{S} U_{S} \exp (i 2 \pi \mathrm{S} .(\mathrm{R}+\mathrm{r}))$

$\sum_{S} U_{S}=\sum_{S} U_{S} \exp (i 2 \pi \mathrm{S} . \mathrm{R})$

$\lambda=\exp (i 2 \pi \boldsymbol{S} \boldsymbol{R})$

$\boldsymbol{S} \boldsymbol{R}=n$

where n is an integer.

Only possible values are of the form:

$\boldsymbol{G}=h \boldsymbol{a}^{*}+k \boldsymbol{b}^{*}+\boldsymbol{I} \boldsymbol{C}^{*}$

as

$\boldsymbol{G} \boldsymbol{R}=h+k+I$

and h, k, l are integers.

Note: This is strictly the crystallographer’s definition of reciprocal lattice vectors. In solid-state physics, the 2π factor is included as a scalar within S. The 2π factor may be omitted depending on the application.

This page titled 20.3: Mathematical Representation of Reciprocal Lattice is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Dissemination of IT for the Promotion of Materials Science (DoITPoMS).