20.2: Reciprocal Space
( \newcommand{\kernel}{\mathrm{null}\,}\)
The animation below shows the relationship between the real lattice and the reciprocal lattice. Note that this 2D representation omits the c* vector, but that it follows the same rules as a* and b*.
-->
The key things to note are that:
- The reciprocal lattice has reciprocal vectors a* and b*, separated by the angle γ*.
- a* is perpendicular to the (100) planes, and equal in magnitude to the inverse of d100.
- Similarly, b* is perpendicular to the (010) planes and equal in magnitude to the inverse of d010.
- γ and γ* will sum to 180º.
Due to the linear relationship between planes (for example, d200 = ½ d100 ), a periodic lattice is generated. In general, the periodicity in the reciprocal lattice is given by
ρ∗hkl=1dhkl
In vector form, the general reciprocal lattice vector for the (h k l) plane is given by
shkl=nhkldhkl
where nhkl is the unit vector normal to the (h k l) planes.
This concept can be applied to crystals, to generate a reciprocal lattice of the crystal lattice. The units in reciprocal space are Å-1 or nm-1