Skip to main content
Engineering LibreTexts

5.6: Key equations

  • Page ID
    88850
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Constant-pressure and constant-volume specific heats

    Constant-pressure specific heat C_p=\left(\displaystyle\frac{\partial\ h}{\partial\ T}\right)_p
    Constant-volume specific heat C_v=\left(\displaystyle\frac{\partial\ u}{\partial\ T}\right)_v
    Relations between C_p and C_v for ideal gases k=\displaystyle\frac{C_p}{C_v} \qquad \qquad C_p=C_v+R

    \[C_v=\displaystyle\frac{R}{k-1} \qquad C_p=\displaystyle\frac{kR}{k-1}\]

    Specific enthalpy

    Change in specific enthalpy \Delta h = h_2-h_1
    Change in specific enthalpy for ideal gases \Delta h = h_2-h_1 = C_p(T_2-T_1)
    (assuming constant C_p in the temperature range)
    Relation between \Delta h and \Delta u for solids and liquids \Delta h \approx\Delta u\approx C_p(T_2-T_1)

    Mass conservation equations in a control volume

    Volume flow rate \dot{\mathbb{V}}=\displaystyle\frac{d\mathbb{V}}{dt}=V_{avg,\ n}A=\dot{m}v
    Mass flow rate \dot{m}=\displaystyle\frac{dm}{dt}=\rho\ V_{avg,\ n}A=\rho\dot{\mathbb{V}}
    Transient flow \displaystyle\frac{dm_{CV}}{dt}=\sum{\dot{m}}_i-\sum{\dot{m}}_e\neq0
    Steady flow \displaystyle\frac{dm_{CV}}{dt}=\sum{\dot{m}}_i-\sum{\dot{m}}_e=0

    Energy conservation equations in a control volume

    Transient flow \displaystyle\frac{dE_{CV}}{dt}\neq0

    \[\begin{align*} \displaystyle\frac{dE_{CV}}{dt}={\dot{Q}}_{cv}-{\dot{W}}_{cv} &+\sum{{\dot{m}}_i(h_i+\frac{1}{2}V_i^2+gz_i)} \\&-\sum{{\dot{m}}_e(h_e+\frac{1}{2}V_e^2+gz_e)} \end{align*}\]

    Steady flow \displaystyle\frac{dE_{CV}}{dt}=0

    \[{\dot{Q}}_{cv} +\sum

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/05:_The_First_Law_of_Thermodynamics_for_a_Control_Volume/5.06:_Key_equations), /content/body/div[4]/table/tbody/tr[2]/td/p/span, line 1, column 1
    
    \]

    Mass and energy conservation equations for steady-state, steady-flow (SSSF) devices

    SSSF device Assumptions Mass conservation Energy conservation
    Expansion device Adiabatic flow; Negligible work transfer with the surroundings; Negligible changes in kinetic and potential energies {\dot{m}}_i={\dot{m}}_e h_i=h_e
    Nozzle and diffuser Adiabatic flow; Negligible work transfer with the surroundings; Negligible change in potential energy {\dot{m}}_i={\dot{m}}_e h_i+\displaystyle\frac{1}{2}V_i^2=h_e+\displaystyle\frac{1}{2}V_e^2
    Mixing chamber Negligible work transfer with the surroundings; Negligible changes in kinetic and potential energies \sum{{\dot{m}}_i=\sum{\dot{m}}_e} {\dot{Q}}_{cv}+\sum{{\dot{m}}_ih_i=\sum{{\dot{m}}_eh_e}}
    Heat exchanger Negligible work transfer with the surroundings; Negligible changes in kinetic and potential energies {\dot{m}}_i={\dot{m}}_e
    (for each of the hot and cold streams, separately)
    {\dot{Q}}_{cv}+\sum{{\dot{m}}_ih_i=\sum{{\dot{m}}_eh_e}}
    Turbine Adiabatic flow; Negligible changes in kinetic and potential energies {\dot{m}}_i={\dot{m}}_e=\dot{m} {\dot{W}}_{shaft}=\dot{m}(h_i-h_e)
    Compressor Adiabatic flow; Negligible changes in kinetic and potential energies {\dot{m}}_i={\dot{m}}_e=\dot{m} {\dot{W}}_{shaft}=\dot{m}(h_e-h_i)

    This page titled 5.6: Key equations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Claire Yu Yan (BC Campus) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.