Skip to main content
Engineering LibreTexts

5.6: Key equations

  • Page ID
    88850
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Constant-pressure and constant-volume specific heats

    Constant-pressure specific heat C_p=\left(\displaystyle\frac{\partial\ h}{\partial\ T}\right)_p
    Constant-volume specific heat C_v=\left(\displaystyle\frac{\partial\ u}{\partial\ T}\right)_v
    Relations between C_p and C_v for ideal gases k=\displaystyle\frac{C_p}{C_v} \qquad \qquad C_p=C_v+R

    \[C_v=\displaystyle\frac{R}{k-1} \qquad C_p=\displaystyle\frac{kR}{k-1}\]

    Specific enthalpy

    Change in specific enthalpy \Delta h = h_2-h_1
    Change in specific enthalpy for ideal gases \Delta h = h_2-h_1 = C_p(T_2-T_1)
    (assuming constant C_p in the temperature range)
    Relation between \Delta h and \Delta u for solids and liquids \Delta h \approx\Delta u\approx C_p(T_2-T_1)

    Mass conservation equations in a control volume

    Volume flow rate \dot{\mathbb{V}}=\displaystyle\frac{d\mathbb{V}}{dt}=V_{avg,\ n}A=\dot{m}v
    Mass flow rate \dot{m}=\displaystyle\frac{dm}{dt}=\rho\ V_{avg,\ n}A=\rho\dot{\mathbb{V}}
    Transient flow \displaystyle\frac{dm_{CV}}{dt}=\sum{\dot{m}}_i-\sum{\dot{m}}_e\neq0
    Steady flow \displaystyle\frac{dm_{CV}}{dt}=\sum{\dot{m}}_i-\sum{\dot{m}}_e=0

    Energy conservation equations in a control volume

    Transient flow \displaystyle\frac{dE_{CV}}{dt}\neq0

    \[\begin{align*} \displaystyle\frac{dE_{CV}}{dt}={\dot{Q}}_{cv}-{\dot{W}}_{cv} &+\sum{{\dot{m}}_i(h_i+\frac{1}{2}V_i^2+gz_i)} \\&-\sum{{\dot{m}}_e(h_e+\frac{1}{2}V_e^2+gz_e)} \end{align*}\]

    Steady flow \displaystyle\frac{dE_{CV}}{dt}=0

    \[{\dot{Q}}_{cv} +\sum

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/05:_The_First_Law_of_Thermodynamics_for_a_Control_Volume/5.06:_Key_equations), /content/body/div[4]/table/tbody/tr[2]/td/p/span, line 1, column 1
    
    \]

    Mass and energy conservation equations for steady-state, steady-flow (SSSF) devices

    SSSF device Assumptions Mass conservation Energy conservation
    Expansion device Adiabatic flow; Negligible work transfer with the surroundings; Negligible changes in kinetic and potential energies {\dot{m}}_i={\dot{m}}_e h_i=h_e
    Nozzle and diffuser Adiabatic flow; Negligible work transfer with the surroundings; Negligible change in potential energy {\dot{m}}_i={\dot{m}}_e h_i+\displaystyle\frac{1}{2}V_i^2=h_e+\displaystyle\frac{1}{2}V_e^2
    Mixing chamber Negligible work transfer with the surroundings; Negligible changes in kinetic and potential energies \sum{{\dot{m}}_i=\sum{\dot{m}}_e} {\dot{Q}}_{cv}+\sum{{\dot{m}}_ih_i=\sum{{\dot{m}}_eh_e}}
    Heat exchanger Negligible work transfer with the surroundings; Negligible changes in kinetic and potential energies {\dot{m}}_i={\dot{m}}_e
    (for each of the hot and cold streams, separately)
    {\dot{Q}}_{cv}+\sum{{\dot{m}}_ih_i=\sum{{\dot{m}}_eh_e}}
    Turbine Adiabatic flow; Negligible changes in kinetic and potential energies {\dot{m}}_i={\dot{m}}_e=\dot{m} {\dot{W}}_{shaft}=\dot{m}(h_i-h_e)
    Compressor Adiabatic flow; Negligible changes in kinetic and potential energies {\dot{m}}_i={\dot{m}}_e=\dot{m} {\dot{W}}_{shaft}=\dot{m}(h_e-h_i)

    This page titled 5.6: Key equations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Claire Yu Yan (BCcampus) via source content that was edited to the style and standards of the LibreTexts platform.