Skip to main content
Engineering LibreTexts

6.10: The second law of thermodynamics for open systems

  • Page ID
    88860
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Entropy can be transferred to a system via two mechanisms: (1) heat transfer and (2) mass transfer. For open systems, the second law of thermodynamics is often written in the rate form; therefore, we are interested in the time rate of entropy transfer due to heat transfer and mass transfer.

    \[\dot{S}_{heat} =\dfrac{dS_{heat}}{dt} \cong \displaystyle\sum\dfrac{\dot{Q}_k}{T_k}\]

    \[\dot{S}_{mass} = \displaystyle\sum\dfrac{dS_{mass}}{dt} = \displaystyle \sum \dot{m}_{k}s_{k}\]

    where

    \[\dot{m}\]

    \[\dot{Q}_k\]

    \[\dot{S}_{heat}\]

    \[\dot{S}_{mass}\]

    \[s_k\]

    Applying the entropy balance equation, \Delta \rm {entropy= + in - out + gen}, to a control volume, see Figure 6.9.1, we can write the following equations:

    • General equation for both steady and transient flow devices

    \[\dfrac

    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/p[1]/span[1], line 1, column 4
    
    UndefinedNameError: reference to undefined name 'dt' (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/p[1]/span[2], line 1, column 1
    
    =\displaystyle\left(\sum
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/p[1]/span[3], line 1, column 1
    
    +\displaystyle\sum\frac
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/p[1]/span[4], line 1, column 1
    
    UndefinedNameError: reference to undefined name 'T' (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/p[1]/span[5], line 1, column 1
    
    \right)-\displaystyle\left(\sum
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/p[1]/span[6], line 1, column 1
    
    \right)+\displaystyle{\dot
    UndefinedNameError: reference to undefined name 'S' (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/p[1]/span[7], line 1, column 1
    
    }_
    UndefinedNameError: reference to undefined name 'gen' (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/p[1]/span[8], line 1, column 1
    
    \ \ \ \ \ \ ({\dot
    UndefinedNameError: reference to undefined name 'S' (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/p[1]/span[9], line 1, column 1
    
    }_
    UndefinedNameError: reference to undefined name 'gen' (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/p[1]/span[10], line 1, column 1
    
    \ge 0)\]

    • For steady-state, steady-flow devices, \dfrac{{dS}_{c.v.}}{dt}=0; therefore,

    \[\displaystyle \sum

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/div[4]/p[1]/span[1], line 1, column 1
    
    -\sum
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/div[4]/p[1]/span[2], line 1, column 1
    
    =\displaystyle \sum\dfrac
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/div[4]/p[1]/span[3], line 1, column 1
    
    UndefinedNameError: reference to undefined name 'T' (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/div[4]/p[1]/span[4], line 1, column 1
    
    +{\dot
    UndefinedNameError: reference to undefined name 'S' (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/div[4]/p[1]/span[5], line 1, column 1
    
    }_
    UndefinedNameError: reference to undefined name 'gen' (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/div[4]/p[1]/span[6], line 1, column 1
    
    \ \ \ \ \ \ ({\dot
    UndefinedNameError: reference to undefined name 'S' (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/div[4]/p[1]/span[7], line 1, column 1
    
    }_
    UndefinedNameError: reference to undefined name 'gen' (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/div[4]/p[1]/span[8], line 1, column 1
    
    \ge 0)\]

    • For steady and isentropic flow devices, \dot{Q}_{c.v.}=0 and \dot S_{gen}=0; therefore,

    \[\displaystyle\sum

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/div[4]/p[2]/span[1], line 1, column 1
    
    =\displaystyle\sum
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/div[4]/p[2]/span[2], line 1, column 1
    
    \]

    where

    \[\dot{m}\]

    \[\dot{Q}_{c.v.}\]

    \[S_{c.v.}\]

    \[\dfrac

    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Mechanical_Engineering/Introduction_to_Engineering_Thermodynamics_(Yan)/06:_Entropy_and_the_Second_Law_of_Thermodynamics/6.10:_The_second_law_of_thermodynamics_for_open_systems), /content/body/p[6]/span, line 1, column 3
    
    {dt}\]

    \[\dot S_{gen}\]

    \[s\]

    \[T\]

    Flow through a control volume, showing the entropy transfers and entropy generation
    Figure 6.9.1 Flow through a control volume, showing the entropy transfers and entropy generation

    Example 1

    The diagrams in Figure 6.9.e1 show a reversible process in a steady-state, single flow of air. The letters i and e represent the initial and final states, respectively. Treat air as an ideal gas and assume ΔKEPE=0. Are the change in specific enthalpy Δh=hehi, specific work w, and specific heat transferq positive, zero, or negative values? What is the relation between w and q?

    T-s and P-v diagrams of a reversible process
    Figure 6.9.e1 T-s and P-v diagrams of a reversible process for an ideal gas

    Solution:

    The specific work can be evaluated mathematically and graphically.

    (1) Mathematically,

    \[\because v_{e} > v_{i}\]

    \[\therefore w = \displaystyle\int_{i}^{e}{Pd{v}\ } >\ 0\]

    (2) Graphically, the specific work is the area under the process curve in the P-v diagram; therefore w is positive, see Figure 6.9.e2.

    In a similar fashion, the specific heat transfer can also be evaluated graphically and mathematically.

    (1) Graphically,

    \[\because ds=\left(\displaystyle\frac{\delta q}{T}\right)_{rev}\]

    \[\therefore q_{rev} = \displaystyle \int_{i}^{e}{Tds} = T(s_e-s_i)\ >\ 0\]

    For a reversible process, the area under the process curve in the T-s diagram represents the specific heat transfer of the reversible process; therefore q=q_{rev} is positive, see Figure 6.9.e2.

    (2) The same conclusion, q_{rev}0" class="latex mathjax" title="q_{rev}>0" src="/@api/deki/files/59236/d00f283ba44c47860e35c0b010cd6fb7.png">, can also be derived from the second law of thermodynamics mathematically, as follows.

    \[\dot{m}(s_e-s_i)=\displaystyle\sum\frac{\dot{Q}}{T_{surr}}+\dot{S}_{gen}\]

    For a reversible process, \dot{S}_{gen}= 0, and the fluid is assumed to be always in thermal equilibrium with the system boundary, or T = T_{surr}; therefore,

    \[q_{rev} = \dfrac{\dot{Q}}{\dot{m}} = T(s_e-s_i) > 0\]

    The change in specific enthalpy can then be evaluated. For an ideal gas,

    \[\Delta h = h_e - h_i = C_p(T_e - T_i)\]

    \[\because T_e = T_i\]

    \[\therefore h_e = h_i\]

    Now, we can determine the relation between w and q_{rev} from the first law of thermodynamics for control volumes.

    \[\because \dot{m}( h_e - h_i ) = \dot{Q}_{rev} - \dot{W} = 0\]

    \[\therefore \dot{Q}_{rev} = \dot{W}\]

    \[\therefore q_{rev} = w\]

    In this reversible process, the specific heat transfer and specific work must be the same. Graphically, the two areas under the P-v and T-s diagrams must be the same.

    T-s and P-v diagrams, showing the solutions for a reversible process for an ideal gas
    Figure 6.9.e2 T-s and P-v diagrams, showing the solutions for a reversible process of an ideal gas

    Query \(\PageIndex{1}\)

    Media Attributions

    • Entropy transfers and entropy generation through a C.V. © Pbroks13 is licensed under a Public Domain license

    This page titled 6.10: The second law of thermodynamics for open systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Claire Yu Yan (BCcampus) via source content that was edited to the style and standards of the LibreTexts platform.