Skip to main content
Engineering LibreTexts

8.1: Principle of impulse and momentum

  • Page ID
    103479
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We first define the concepts impulse and momentum, then introduce the principle of impulse and momentum and finally present the derivation of it. These concepts are also illustrated in Figure 8.1.

    2024_05_26_bb4f60b7a8d3c1ec2437g-142.jpg
    Figure 8.1: Impulse, momentum and the principle of impulse and momentum.
    Concept: Impulse

    The impulse vector \(\overrightarrow{\boldsymbol{J}}_{i, 12}\) is defined as the time integral of the sum of all forces \(j\) acting on a mass \(m_{i}\) over a specific time interval \(t_{1}-t_{2}\) :

    \[\overrightarrow{\boldsymbol{J}}_{i, 12} \equiv \sum_{j} \int_{t_{1}}^{t_{2}} \overrightarrow{\boldsymbol{F}}_{i j} \mathrm{~d} t \tag{8.1} \label{8.1}\]

    Impulse has \(\mathrm{N} \cdot \mathrm{s}\) as unit.

    Concept: Momentum

    The momentum vector \(\overrightarrow{\boldsymbol{p}}_{i}\) is defined as the product of a mass and its velocity vector:

    \[\overrightarrow{\boldsymbol{p}}_{i} \equiv m_{i} \overrightarrow{\boldsymbol{v}}_{i} \tag{8.2} \label{8.2}\]

    The unit of momentum is \(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}\).

    Concept: Principle of impulse and momentum

    The impulse acting on a mass \(m_{i}\) equals its change in momentum.

    \[\overrightarrow{\boldsymbol{p}}_{i}\left(t_{1}\right)+\overrightarrow{\boldsymbol{J}}_{i, 12}=\overrightarrow{\boldsymbol{p}}_{i}\left(t_{2}\right) \tag{8.3} \label{8.3}\]

    Since this is a vector equation, it can be projected on the three coordinate axes to obtain three scalar equations along each of the axes. The principle of impulse and momentum is mainly useful to calculate velocity changes if the impulse is known.

    Derivation: Principle of impulse and momentum

    The principle of impulse and momentum can be derived by integrating Newton’s second law over time:

    \[\sum_{j} \int_{t_{1}}^{t_{2}} \overrightarrow{\boldsymbol{F}}_{i j} \mathrm{~d} t=\int_{t_{1}}^{t_{2}} m_{i} \overrightarrow{\boldsymbol{a}}_{i} \mathrm{~d} t \tag{8.4} \label{8.4}\]

    The integral on the right can be evaluated to obtain:

    \[\sum_{j} \int_{t_{1}}^{t_{2}} \overrightarrow{\boldsymbol{F}}_{i j} \mathrm{~d} t=\int_{t_{1}}^{t_{2}} m \frac{\mathrm{d} \overrightarrow{\boldsymbol{v}}_{i}}{\mathrm{~d} t} \mathrm{~d} t=m \overrightarrow{\boldsymbol{v}}_{i}\left(t_{2}\right)-m \overrightarrow{\boldsymbol{v}}_{i}\left(t_{1}\right) \tag{8.5} \label{8.5}\]

    From Equation 8.1 and Equation 8.2 it follows that this equation is identical to Equation 8.3.


    This page titled 8.1: Principle of impulse and momentum is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Peter G. Steeneken via source content that was edited to the style and standards of the LibreTexts platform.