Center of Mass and Mass Moments of Inertia for Homogeneous 3D Bodies
( \newcommand{\kernel}{\mathrm{null}\,}\)
Shape with Volume and Center of Mass Location Shown | Mass Moments of Inertia |
---|---|
Slender Rod |
Ixx=Izz=112ml2 Iyy=0 Ixx′=Izz′=13ml2 |
Flat Rectangular Plate |
Ixx=112mh2 Iyy=112m(h2+b2) Izz=112mb2 |
Flat Circular Plate |
Ixx=Izz=14mr2 Iyy=12mr2 |
Thin Circular Ring |
Ixx=Izz=12mr2 Iyy=mr2 |
Rectangular Prism Volume=dwh |
Ixx=112m(h2+d2)Iyy=112m(d2+w2)Izz=112m(h2+w2) |
Cylinder Volume=πr2h |
Ixx=Izz=112m(3r2+h2) Iyy=12mr2 |
Thin Cylindrical Shell |
Ixx=Izz=16m(3r2+h2) Iyy=mr2 |
Half Cylinder Volume=12πr2h |
Ixx=Izz=(14−169π2)mr2+112mh2 Iyy=(12−169π2)mr2 Ixx′=Izz′=112m(3r2+h2) Iyy′=12mr2 |
Sphere Volume=43πr3 |
Ixx=Iyy=Izz=25mr2 |
Spherical Shell |
Ixx=Iyy=Izz=23mr2 |
Hemisphere Volume=23πr3 |
Ixx=Izz=83320mr2 Iyy=25mr2 Ixx′=Izz′=25mr2 |
Hemispherical Shell |
Ixx=Izz=512mr2 Iyy=23mr2 Ixx′=Izz′=23mr2 |
Right Circular Cone Volume=13πr2h |
Ixx=Izz=380m(4r2+h2) Iyy=310mr2 Ixx′=Izz′=120m(3r2+2h2) |