Skip to main content
Engineering LibreTexts

Centroids and Area Moments of Inertia for 2D Shapes

  • Page ID
    58050
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Shape with Area and Centroid Location Shown Rectangular Area Moments of Inertia Polar Area Moments of Inertia

    Rectangle

    A rectangle of length b and height h in the first quadrant of a Cartesian coordinate plane with axes labeled x' and y', with the lower left corner at the origin. The centroid is located at the coordinates x = b/2, y = h/2. Another coordinate system is located with its origin on the centroid, with axes labeled x and y.

    \(Area = bh\)

    \begin{align*} I_x &= \frac{1}{12} b h^3 \\[4pt] I_y &= \frac{1}{12} b^3 h \end{align*}

    \( J_z = \dfrac{1}{12} bh(b^2 + h^2) \)

    Right Triangle

    The first quadrant of a Cartesian coordinate plane with axes labeled x' and y'. A right triangle with its right angle at the origin of this plane lies with its base of length b along the x'-axis and its height of length h along the y'-axis. The centroid of the triangle, located h/3 units above and b/3 units to the right of this origin, is labeled C and forms the origin for a second Cartesian coordinate system with axes labled x and y.

    \(Area = \dfrac{1}{2} bh\)

    \begin{align*} I_x &= \frac{1}{36} bh^3 \\[4pt] I_y &= \frac{1}{36} b^3 h \end{align*}

    \begin{align*} I_{x'} &= \frac{1}{12} bh^3 \\[4pt] I_{y'} &= \frac{1}{12} b^3 h \end{align*}

    Triangle

    The first quadrant of a Cartesian coordinate plane with axes labeled x' and y'. One vertex of a triangle lies at the origin of this plane, with one side of the triangle, of length b, lying along the x'-axis. The vertex where the other two sides of the shape intersect is located h units above the x'-axis. The centroid of the triangle is located h/3 units above and b/2 units to the right of the origin. The centroid, labeled C, forms the origin of another Cartesian coordinate system with axes labeled x and y.

    \(Area = \dfrac{1}{2} bh\)

    \(I_x = \dfrac{1}{36} bh^3\)

    \(I_{x'} = \dfrac{1}{12} bh^3\)

    Circle

    A circular disk of radius r is centered at the origin of a Cartesian coordinate plane with axes labeled x and y. The circle's centroid C is coincident with this origin.

    \(Area = \pi r^2\)

    \begin{align*} I_x &= \frac{\pi}{4} r^4\\[4pt] I_y &= \frac{\pi}{4} r^4 \end{align*}

    \(J_z = \dfrac{\pi}{2} r^4\)

    Circular Annulus

    A disk of radius r_o is centered at the origin of a Cartesian coordinate plane with axes labeled x and y. A disk of smaller radius r_i, also centered at the origin, is removed from that larger disk. The centroid of the shape, labeled C, is coincident with this origin.

    \(Area = \pi (r_o^2 - r_i^2) \)

    \begin{align*} I_x &= \frac{\pi}{4} (r_o^4 - r_i^4) \\[4pt] I_y &= \frac{\pi}{4} (r_o^4 - r_i^4) \end{align*}

    \(J_z = \dfrac{\pi}{2} (r_o^4 - r_i^4)\)

    Semicircle

    A Cartesian coordinate plane with axes labeled x' and y has the straight edge of a semicircle of radius r lying along the x-axis, centered at the origin. The semicircle stretches upwards along the positive y-axis. The centroid C of the semicircle lies on the y-axis, a distance 4r/(3 pi) units above the origin. Point C forms the origin of another Cartesian coordinate system, with the x-axis stretching to the right and the y-axis shared with the existing y-axis.

    \(Area = \dfrac{\pi}{2} r^2\)

    \(I_x = \left( \dfrac{\pi}{8} - \dfrac{8}{9 \pi} \right) r^4 \)

    \(I_y = \dfrac{\pi}{8} r^4\)

    \(I_{x'} = \dfrac{\pi}{8} r^4\)

    \(J_z = \left( \dfrac{\pi}{4} - \dfrac{8}{9 \pi} \right) r^4\)

    Quarter Circle

    The first quadrant of a Cartesian coordinate plane with axes labeled x' and y'. The two sides of a quarter-circle of radius r, centered at the origin, lie along these axes. The centroid C of the quarter circle is located a distance of 4r/(3 pi) units above and 4r/(3 pi) units to the right of the origin. Point C forms the origin of another Cartesian coordinate system, with axes labeled x and y.

    \(Area = \dfrac{\pi}{4} r^2\)

    \begin{align*} I_x &= \left( \frac{\pi}{16} - \frac{4}{9 \pi} \right) r^4 \\[4pt] I_y &= \left( \frac{\pi}{16} - \frac{4}{9 \pi} \right) r^4 \end{align*}

    \begin{align*} I_{x'} &= \frac{\pi}{16} r^4 \\[4pt] I_{y'} &= \frac{\pi}{16} r^4 \end{align*}

    \( J_z = \left( \dfrac{\pi}{8} - \dfrac{8}{9 \pi} \right) r^4 \)

    Ellipse

    An ellipse lies with its centroid C at the origin of a Cartesian coordinate plane with axes labled x and y. Its semi-major axis, of length a, stretches along the x-axis and its semi-minor axis of length stretches along the y-axis.

    \(Area = \pi ab\)

    \begin{align*} I_x &= \frac{\pi}{4} ab^3 \\[4pt] I_y &= \frac{\pi}{4} a^3 b \end{align*}

    • Was this article helpful?