Skip to main content
Engineering LibreTexts

11.6: Flow Rule

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The simplest form of the associated flow rule for a rigid perfectly plastic material is given by

    \[\dot{\epsilon}_{ij} = \dot{\lambda} \frac{\partial F(\sigma_{ij})}{\partial \sigma_{ij}} \]

    where the function \(F(\sigma_{ij})\) is defined by Equation (11.3.8), and \(\dot{\lambda}\) is the scalar multiplication factor. Equation (11.3.11) determines uniquely the direction of the strain rate vector, which is always directed normal to the yield surface at a given stress point. In the case of plane stress, the two components of the strain rate vector are

    \[\dot{\epsilon}_1 = \dot{\lambda} (2\sigma_1 − \sigma_2) \]

    \[\dot{\epsilon}_2 = \dot{\lambda} (2\sigma_2 − \sigma_1) \]

    The magnitudes of the components \(\dot{\epsilon}_1\) and \(\dot{\epsilon}_2\) are undetermined, but the ratio, which defines the direction \(\dot{\epsilon}/\epsilon_2\), is uniquely determined.

    In particular, under the transverse plain strain \(\dot{\epsilon}_2 = 0\), so \(\sigma_1 = 2\sigma_2\) and \(\sigma_1 = \frac{2}{\sqrt{3}} \sigma_y\).

    Figure \(\PageIndex{1}\): The strain rate vector is always normal to the yield surface.

    This page titled 11.6: Flow Rule is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Tomasz Wierzbicki (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.