Skip to main content
Engineering LibreTexts

5.4: Maxima At and Above a Given Level

  • Page ID
    47247
    • Franz S. Hover & Michael S. Triantafyllou
    • Massachusetts Institute of Technology via MIT OpenCourseWare
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Now we look at the probability of any maximum amplitude \(a_{ia}\) reaching or exceeding a given level. We normalize the amplitude with the random process variance, i.e., \( \eta = a / \sqrt{M_0} \) and \( \bar{\eta} = A / \sqrt{M_0} \). The results are very useful for calculating extreme loads. First,

    \[\begin{align} p( \eta = \bar{\eta}) \, &= \, \dfrac{\epsilon}{\sqrt{2 \pi}} e^{- \bar{\eta}^2 / 2 \epsilon^2} + \phi (\bar{\eta} q / \epsilon) \dfrac{\bar{\eta}q}{\sqrt{2 \pi}} e^{- \bar{\eta}^2 / 2} \end{align}\]

     where

    \[\begin{align} q &= \, \sqrt{1 - \epsilon^2}, \\[4pt] \phi(\xi) \, &= \, \int\limits_{-\infty}^{\xi} e^{-u^2 / 2}  du \end{align}\]

    related to the error function erf)

    With large amplitudes being considered and small \(\epsilon\) (a narrow-banded process), we can make some approximations to find:

    \begin{align} p(\eta = \bar{\eta}) \, &\approx \, \dfrac{2q}{1+q} \bar{\eta} e^{- \bar{\eta}^2 / 2} \longrightarrow \\[4pt] p(\eta > \bar{\eta}) \, &\approx \, \dfrac{2q}{1+q} e^{- \bar{\eta}^2 / 2}. \end{align}

    The second relation here is the more useful, as it gives the probability that the (nondimensional) amplitude will exceed a given value. It follows directly from the former equation, since (roughly) the cumulative distribution is the derivative of the probability density.


    This page titled 5.4: Maxima At and Above a Given Level is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz S. Hover & Michael S. Triantafyllou (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.