Skip to main content
Engineering LibreTexts

5.6: 1/N'th Average Value

  • Page ID
    47249
    • Franz S. Hover & Michael S. Triantafyllou
    • Massachusetts Institute of Technology via MIT OpenCourseWare
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We can similarly define a statistic that is the average of the \(1/N\)'th highest peaks. In this case, we are after the average of this collection of \(1/N\) peaks:

    \begin{align} \bar{a}^{1/N} \, &= \, E(a | a > a^{1/N}) \\[4pt] &= \int\limits_{a^{1/N}}^{\infty} a \, p(a = a_m | a_m > a^{1/N}) \, da. \end{align}

    Note that we use the dummy variable \(a_m\). We have then the conditional probability

    \[ p(a = a_m | a_m > a^{1/N}) = \dfrac{p \left[ (a=a_m) \cap (a_m > a^{1/N}) \right]}{p(a_m > a^{1/N})}. \]

    Working in nondimensional form, we have

    \begin{align} \bar{\eta}^{1/N} \, &= \, \int\limits_{\eta^{1/N}}^{\infty} \dfrac{1}{1/N} \eta p(\eta = \eta_m) \, d\eta \\[4pt] &= \, \dfrac{2qN}{1+q} \int\limits_{\eta^{1/N}}^{\infty} \eta^2 e^{{\eta^2}/2} \, d\eta. \end{align}

    Here are a few explicit results for amplitude and height:

    \begin{align} \bar{a}^{1/3} \, &= \, 1.1 \sqrt{M_0} \text{ to } 2 \sqrt{M_0} \\[4pt] \bar{a}^{1/10} \, &= \, 1.8 \sqrt{M_0} \text{ to } 2.5 \sqrt{M_0} \end{align}

    The amplitudes here vary depending on the spectral broadness parameter \(\epsilon\) - this point is discussed in the Principles of Naval Architecture, volume III, page 20 (E.V., Lewis, ed. SNAME, 1989; see here for a link to this text). Here are some \(1/N\)'th average heights:

    \begin{align} \bar{h}^{1/3} \, &= \, 4.0 \sqrt{M_0} \\[4pt] \bar{h}^{1/10} \, &= \, 5.1 \sqrt{M_0}. \end{align}

    The value \(\bar{h}^{1/3}\) is the significant wave height, the most common description of the size of waves. It turns out to be very close to the wave size reported by experienced mariners.

    Finally, here are the expected highest heights in \(N\) observations - which is not quite either of the \(1/N\)'th maximum or the \(1/N\)'th average statistics given above:

    \begin{align} \bar{h}(100) \, &= \, 6.5 \sqrt{M_0} \\[4pt] \bar{h}(1000) \, &= \, 7.7 \sqrt{M_0} \\[4pt] \bar{h}(10000) \, &= \, 8.9 \sqrt{M_0}. \end{align}


    This page titled 5.6: 1/N'th Average Value is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz S. Hover & Michael S. Triantafyllou (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.