Skip to main content
Engineering LibreTexts

11.1: Introduction to Control Fundamentals

  • Page ID
    47286
    • Franz S. Hover & Michael S. Triantafyllou
    • Massachusetts Institute of Technology via MIT OpenCourseWare
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    11.1.1: Plants, Inputs, and Outputs

    Controller design is about creating dynamic systems that behave in useful ways. Many target systems are physical; we employ controllers to steer ships, fly jets, position electric motors and hydraulic actuators, and distill alcohol. Controllers are also applied in macroeconomics and many other important, non-physical systems.

    It is the fundamental concept of controller design that a set of input variables acts through a given “plant” to create an output. Feedback control then uses sensed plant outputs to apply corrective plant inputs:

    Plant Inputs Outputs Sensors
    Jet aircraft elevator, rudder, etc. altitude, heading altimeter, GPS
    Marine vessel rudder angle heading gyrocompass
    Hydraulic robot valve position tip position joint angle
    U.S. economy federal interest rate, etc. prosperity, inflation inflation, M1
    Nuclear reactor cooling, neutron flux heat, power level temperature, pressure

    11.1.2: The Need for Modeling

    Effective control system design usually benefits from an accurate model of the plant, although it must be noted that many industrial controllers can be tuned up satisfactorily with no knowledge of the plant. Ziegler and Nichols, for example, developed a general heuristic recipe which we detail later. In any event, plant models simply do not match real-world systems exactly; we can only hope to capture the basic components in the form of differential or other equations.

    Beyond prediction of plant behavior based on physics, system identification generates a plant model from actual data. The process is often problematic, however, since the measured response could be corrupted by sensor noise or physical disturbances in the system which cause it to behave in unpredictable ways. At some frequency high enough, most systems exhibit effects that are difficult to model or reproduce, and this is a limit to controller performance.

    11.1.3: Nonlinear Control

    The bulk of this subject is taught using the tools of linear systems analysis. The main reason for this restriction is that nonlinear systems are difficult to model, difficult to design controllers for, and difficult overall! Within the paradigm of linear systems, there are many sets of powerful tools available. The reader interested in nonlinear control is referred to the book Applied Nonlinear Control by Slotine and Li (1991).


    This page titled 11.1: Introduction to Control Fundamentals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz S. Hover & Michael S. Triantafyllou (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.