Skip to main content
Engineering LibreTexts

11.8: Heuristic Tuning

  • Page ID
    50393
    • Franz S. Hover & Michael S. Triantafyllou
    • Massachusetts Institute of Technology via MIT OpenCourseWare
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    For many practical systems, tuning of a PID controller may proceed without any system model. This is especially pertinent for plants which are open-loop stable, and can be safely tested with varying controllers. One useful approach is due to Ziegler and Nichols (e.g., Bélanger, 1995), which transforms the basic characteristics of a step response (e.g., the input is \(1(t)\)) into a reasonable PID design. The idea is to approximate the response curve by a first-order lag (gain \(k\) and time constant \(\tau\)) and a pure delay \(T\):

    \[ P(s) \, \simeq \, \frac{k e^{-Ts}}{\tau s + 1} \]

    The following rules apply only if the plant contains no dominating, lightly-damped complex poles, and has no poles at the origin:

    \(\quad \text{P}\) \(k_p = 1.0 \tau / T\)
    \(\quad \text{PI}\) \(k_p = 0.9 \tau / T\) \(k_i = 0.27 \tau / T^2\)
    \(\quad \text{PID}\) \(k_p = 1.2 \tau / T\) \(k_i = 0.60 \tau / T^2\) \(k_d = 0.60 \tau\)

    Note that if no pure time delay exists (\(T = 0\)), this recipe suggests the proportional gain can become arbitrarily high! Any characteristic other than a true first-order lag would therefore be expected to cause a measurable delay.


    This page titled 11.8: Heuristic Tuning is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz S. Hover & Michael S. Triantafyllou (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.