# 5.2.4: Procedure

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

1. Consider the dual supply circuit of Figure 14.3.1 using E1 = 10 volts, E2 = 15 volts, R1 = 4.7 k, R2 = 6.8 k and R3 = 10 k. To find the voltage from node A to ground, mesh analysis may be used. This circuit may be described via two mesh currents, loop one formed with E1, R1, R2 and E2, and loop two formed with E2, R2 and R3. Note that these mesh currents are the currents flowing through R1 and R3 respectively.

2. Using KVL, write the loop expressions for these two loops and then solve to find the mesh currents. Note that the third branch current (that of R2) is the combination of the mesh currents and that the voltage at node A can be determined using the second mesh current and Ohm’s law. Compute these values and record them in Table 14.5.1.

3. Build the circuit of Figure 14.3.1 using the values specified in step one. Measure the three branch currents and the voltage at node A and record in Table 14.5.1. Be sure to note the directions and polarities. Finally, determine and record the deviations in Table 14.5.1.

4. Consider the dual supply circuit of Figure 14.3.2 using E1 = 10 volts, E2 = 15 volts, R1 = 4.7 k, R2 = 6.8 k, R3 = 10 k, R4 = 22 k and R5 = 33 k. This circuit will require three loops to describe fully. This means that there will be three mesh currents in spite of the fact that there are five branch currents. The three mesh currents correspond to the currents through R1, R2, and R4.

5. Using KVL, write the loop expressions for these loops and then solve to find the mesh currents. Note that the voltages at nodes A and B can be determined using the mesh currents and Ohm’s law. Compute these values and record them in Table 14.5.2.

6. Build the circuit of Figure 14.3.2 using the values specified in step four. Measure the three mesh currents and the voltages at node A, node B, and from node A to B, and record in Table 14.5.2. Be sure to note the directions and polarities. Finally, determine and record the deviations in Table 14.5.2.

This page titled 5.2.4: Procedure is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by James M. Fiore.