Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Engineering LibreTexts

10.7: Exercises

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}

Analysis

1. Determine the impedance of the circuit of Figure \PageIndex{1} for a 1 kHz sine.

clipboard_e9583eda9573496e8120f75aa2cedfae5.png

Figure \PageIndex{1}

2. Determine the impedance of the circuit of Figure \PageIndex{1} for a 5 kHz sine.

3. Determine the impedance of the circuit of Figure \PageIndex{2} for a 10 kHz sine.

clipboard_ed658c1516e8142a6bf42eca899c04e8a.png

Figure \PageIndex{2}

4. Determine the impedance of the circuit of Figure \PageIndex{2} for a 50 kHz sine.

5. Determine the impedance of the circuit of Figure \PageIndex{3} for a 1 kHz sine.

clipboard_e7a5338c668b6ab90b6282b3e8dadc933.png

Figure \PageIndex{3}

6. Determine the impedance of the circuit of Figure \PageIndex{3} for a 500 Hz sine.

7. Determine the impedance of the circuit of Figure \PageIndex{4}.

clipboard_e6cd1c78989415f2f329b13424e59b3c7.png

Figure \PageIndex{4}

8. In the circuit of Figure \PageIndex{4}, if the input frequency is 100 Hz, what is the value of the inductor, in mH?

9. In the circuit of Figure \PageIndex{4}, if the input frequency is 200 Hz, what is the value of the capacitor, in \muF?

10. Draw the voltage and current waveforms for the circuit of Figure \PageIndex{5}.

clipboard_ebbc4f9791fbdf0428c46f16ff8531422.png

Figure \PageIndex{5}

11. Draw the voltage and current waveforms for the circuit of Figure \PageIndex{6}.

clipboard_ee3695360ef74575282a157bd3d8e66a3.png

Figure \PageIndex{6}

12. Draw the voltage and current waveforms for the circuit of Figure \PageIndex{7} if E is a one volt peak sine at a frequency of 10 kHz and C = 3.3 nF.

clipboard_e740c999c8e25fe1c59aa1fbf6ac2a3b5.png

Figure \PageIndex{7}

13. Draw the voltage and current waveforms for the circuit of Figure \PageIndex{8} if E is a two volt peak-peak sine at a frequency of 40 Hz and L = 33 mH.

clipboard_e45d42bc1a8a2681f92911b3ef3481075.png

Figure \PageIndex{8}

14. Draw the voltage and current waveforms for the circuit of Figure \PageIndex{9} if I is a 10 \muA peak sine at a frequency of 2 kHz and C = 6.8 nF.

clipboard_e4afb746836fd6569cee9eccf75418bc3.png

Figure \PageIndex{9}

15. Draw the voltage and current waveforms for the circuit of Figure \PageIndex{10} if I is a two amp peak-peak sine at a frequency of 40 Hz and L = 33 mH.

clipboard_e0d430e5665ffa1b8b826164115cc7889.png

Figure \PageIndex{10}

16. Determine the impedance of the circuit of Figure \PageIndex{11}.

clipboard_e5971a40faa2cc7386a6f4f70520460b3.png

Figure \PageIndex{11}

17. Determine the impedance of the circuit of Figure \PageIndex{11} using a frequency of 10 kHz.

18. For the circuit of Figure \PageIndex{11}, determine the circulating current and the voltages across each component. Draw a phasor diagram of the three component voltages. Also find the time delay between the voltages of the components.

19. For the circuit of Figure \PageIndex{11} using a frequency of 10 kHz, determine the circulating current and the voltages across each component. Draw a phasor diagram of the three component voltages and determine the time delay between the capacitor and resistor voltages.

20. Determine the impedance of the circuit of Figure \PageIndex{12}.

clipboard_e7990b6963727ceec9c8d86aa4a16ac11.png

Figure \PageIndex{12}

21. Determine the impedance of the circuit of Figure \PageIndex{12} using a frequency of 10 kHz.

22. For the circuit of Figure \PageIndex{12}, determine the circulating current and the voltages across each component. Also find the time delay between the voltages of the components.

23. For the circuit of Figure \PageIndex{12} with a frequency of 3 kHz, determine the circulating current and the voltages across each component. Also find the time delay between the voltages of the components.

24. For the circuit of Figure \PageIndex{13}, determine the circulating current.

clipboard_e64520bdb0eb287bb900e4bcdc99f102e.png

Figure \PageIndex{13}

25. Determine the impedance of the circuit of Figure \PageIndex{13} using a frequency of 1.5 kHz.

26. For the circuit of Figure \PageIndex{13}, determine the circulating current and the voltages across each component. Also find the time delay between the voltages of the components.

27. For the circuit of Figure \PageIndex{13} with a frequency of 1.5 kHz, determine the circulating current and the voltages across each component. Also find the time delay between the voltages of the components.

28. For the circuit of Figure \PageIndex{14}, determine the circulating current and the voltages across each component. Draw a phasor diagram of the three component voltages and determine the time delay between the inductor and resistor voltages.

clipboard_efc20056defc04ffafea24d376500ab69.png

Figure \PageIndex{14}

29. For the circuit of Figure \PageIndex{15}, determine the circulating current and the voltages across each component.

clipboard_ef11945ee6af548dcff375e933739b8f7.png

Figure \PageIndex{15}

30. For the circuit of Figure \PageIndex{16}, determine the circulating current and the voltages across each component.

clipboard_e6d3bdc4d8dada3aa50967f449a7a006d.png

Figure \PageIndex{16}

31. For the circuit of Figure \PageIndex{17}, determine the applied voltage and the voltages across each component.

clipboard_e249993196af3720aaa7dabe6cf4933cb.png

Figure \PageIndex{17}

32. For the circuit of Figure \PageIndex{18}, determine the applied voltage and the voltages across each component.

clipboard_e0ff58ed03ad63afd09e3aff2da2e37e5.png

Figure \PageIndex{18}

33. For the circuit of Figure \PageIndex{19}, determine the circulating current and the voltages across each component.

clipboard_e0f91d0b8c1f4f8102fff4b58c6db72ce.png

Figure \PageIndex{19}

34. Repeat the previous problem using an input frequency of 10 kHz.

35. For the circuit of Figure \PageIndex{20}, determine the circulating current and the voltages across each component. The source is a 10 volt peak sine at 20 kHz, R = 200 \Omega, C = 100 nF and L = 1 mH.

clipboard_e2ba9edc933121e94d96a4f2d975922aa.png

Figure \PageIndex{20}

36. For the circuit of Figure \PageIndex{20}, find v_b and v_{ac}.

37. For the circuit of Figure \PageIndex{21}, find v_b and v_{ac}. The source is a 50 volt peakpeak sine at 10 kHz, R = 100 \Omega, C = 200 nF and L = 1 mH.

clipboard_e4b62fc0532cd590e8d328ce314cf9233.png

Figure \PageIndex{21}

38. For the circuit of preceding problem, determine the circulating current and the voltages across each component.

39. For the circuit of Figure \PageIndex{22}, determine the circulating current and the voltages across each component. E is a 1 volt peak 2 kHz sine. Also, draw a phasor diagram of the four component voltages.

clipboard_e28df7b80dbc11136a9383a2f726f422b.png

Figure \PageIndex{22}

40. For the circuit of Figure \PageIndex{22}, find v_b and v_{ca}. E is a 1 volt peak 2 kHz sine.

41. For the circuit of Figure \PageIndex{23}, determine v_b, v_c and v_{ac}. E is a 10 volt peak 15 kHz sine.

clipboard_eef0993fa19f78a6d69dc24114902f2fb.png

Figure \PageIndex{23}

42. For the circuit of Figure \PageIndex{24}, determine the circulating current and the voltages across each component. E is a 100 millivolt peak 250 Hz sine. Further, draw a phasor diagram of the four component voltages.

clipboard_e27bb59d97bf68e999fb81a6140248f96.png

Figure \PageIndex{24}

43. For the circuit of Figure \PageIndex{25}, determine the circulating current and the voltages across each component. E is a 2 volt RMS 1 kHz sine. Also, draw a phasor diagram of the four component voltages.

clipboard_e3369ee494fd071a343ec5e1885146e3d.png

Figure \PageIndex{25}

44. For the circuit of Figure \PageIndex{26}, determine v_b, v_c and v_{ac}. E is a 1 volt peak 25 kHz sine.

clipboard_e08ad5a3bc8ed9d94674a8a9897e67b47.png

Figure \PageIndex{26}

45. For the circuit of Figure \PageIndex{27}, determine the voltages across each component. The source is a 50 mA peak sine at 15 kHz, R = 200 \Omega, C = 100 nF and L = 1.5 mH.

clipboard_e930aabca82002586d4c335ff6fc2554c.png

Figure \PageIndex{27}

46. For the circuit of Figure \PageIndex{28}, determine v_{ac}, v_b and v_c. The source is a 10 mA peak-peak sine at 50 kHz, R = 2 k\Omega, C = 10 nF and L = 800 \muH.

clipboard_e389c8b31b13e7fbd89ffc4170d775c47.png

Figure \PageIndex{28}

47. For the circuit of Figure \PageIndex{29}, determine the voltages across each component. The source is a 2 mA RMS sine at 1 kHz, R = 1.2 k\Omega, C = 750 nF and L = 6.8 mH.

clipboard_e7ad0cc6bda965c44bc9eb6026c34ab1c.png

Figure \PageIndex{29}

48. For the circuit of Figure \PageIndex{30}, determine v_{ac}, v_b and v_a. The source is a 2 mA peak-peak sine at 300 kHz, R = 560 \Omega, C = 6.8 nF and L = 400 \muH.

clipboard_ee37d7e71835ea657437c24634646b087.png

Figure \PageIndex{30}

49. For the circuit of Figure \PageIndex{31}, determine the voltages across each component.

clipboard_eff6301124037d0ea88b08a1256311941.png

Figure \PageIndex{31}

50. For the circuit of Figure \PageIndex{32}, determine the voltages across each component. Further, draw a phasor diagram of the four component voltages.

clipboard_e1e44a3b17d181ac467226a3af354781a.png

Figure \PageIndex{32}

51. For the circuit of Figure \PageIndex{33}, v_{ac}, v_b and v_c. The source is 5 mA peak at 8 kHz.

clipboard_e94d2c28dac4febbfab60f36a59792623.png

Figure \PageIndex{33}

52. For the circuit of Figure \PageIndex{34}, determine the voltages across each component. The source is 20 mA peak at 100 kHz.

clipboard_edd6503f45a41055b0fa3f58562ee5b0a.png

Figure \PageIndex{34}

53. For the circuit of Figure \PageIndex{35}, determine the voltages across each component.

clipboard_edc897debeac944465da0cf1baca7e173.png

Figure \PageIndex{35}

54. For the circuit of Figure \PageIndex{36}, determine the voltages v_b and v_{db}. E1 = 2\angle 0^{\circ} and E2 = 5\angle 90^{\circ}.

clipboard_e2e325984055b55244a942db4a8f74960.png

Figure \PageIndex{36}

55. Determine the inductance and capacitance values for the circuit of problem 52.

56. For the circuit of Figure \PageIndex{36}, determine the inductor and capacitor values if the source frequency is 12 kHz.

57. For the circuit of Figure \PageIndex{37}, determine the voltages across each component. E1 = 1\angle 0^{\circ} and E2 = 8\angle 60^{\circ}.

clipboard_eb2fbd9dfe1974790bc41e98c48ba994b.png

Figure \PageIndex{37}

Design

58. Redesign the circuit of Figure \PageIndex{11} using a new capacitor such that the current magnitude from the source is 100 \muA.

59. Redesign the circuit of Figure \PageIndex{12} using a new frequency such that the current magnitude from the source is 200 \muA.

60. For the circuit of Figure \PageIndex{11}, determine a new capacitor such that |X_C| = R.

61. For the circuit of Figure \PageIndex{12}, determine a new frequency such that |X_L| = R.

Challenge

62. For the circuit of Figure \PageIndex{19}, determine a new frequency such that |X_C| = |X_L|.

63. Determine the output voltage across the capacitor of Figure \PageIndex{11} at frequencies of 100 Hz, 5 kHz and 20 kHz. In light of this, if the input signal was a 1 kHz square wave instead of a sine wave as pictured, how would this circuit affect the shape of the output waveform (hint: consider superposition)?

64. Assume that you are troubleshooting a circuit like the one shown in Figure \PageIndex{20}. E is a 2 volt peak sine at 2 kHz, R = 390 \Omega, C = 100 nF and L = 25 mH. The circulating current measures approximately 4 mA with a lagging phase angle of just under −40 degrees. What is the likely problem?

65. Given the circuit shown in Figure \PageIndex{20}, find the values for C and L if the source is a 6 volt sine wave at 1 kHz, R = 2 k\Omega, v_R = 4 V and v_L = 5 V.

66. The circuit of Figure \PageIndex{38} can be used as part of a loudspeaker crossover network. The goal of this circuit is to steer the low frequency tones to the low frequency transducer (labeled here as “Loudspeaker” and often referred to as a woofer). A similar network substitutes a capacitor for the inductor to steer the high frequency tones to the high frequency transducer (AKA tweeter). These networks can be pictured as frequency sensitive voltage dividers. At very low frequencies, X_C is very large and blocks low frequency tones from reaching the tweeter. A mirror situation occurs with the inductor/woofer variant. The crossover frequency is the frequency at which the reactance magnitude equals the resistance. Assuming simple 8 \Omega resistances for the woofer and tweeter, determine capacitor and inductor values that would yield a 1.5 kHz crossover frequency. How might this concept be extended to a mid-range loudspeaker that only produces tones in the middle of the musical frequency spectrum? (Note, this concept will be revisited in the final simulation problem, below, and also in the Simulation portion of Chapter 4 which covers series-parallel circuits.)

clipboard_e8e2b55ac1394f6cc4f4fff2f6b946542.png

Figure \PageIndex{38}

Simulation

67. Simulate the solution of design problem 58 and determine if the values produce the required results.

68. Simulate the solution of design problem 59 and determine if the values produce the required results.

69. Simulate the solution of design problem 60 and determine if the values produce the required results. Hint: if the reactance/resistance magnitudes are the same, then the voltage magnitudes will be identical.

70. Simulate the solution of design problem 61 and determine if the values produce the required results. Hint: if the reactance/resistance magnitudes are the same, then the voltage magnitudes will be identical.

71. Simulate the solution of challenge problem 62 and determine if the new frequency produces the required results. Hint: if the reactance magnitudes are the same, then the voltage magnitudes will be identical. Further, their phases will cause these voltages to cancel, leaving the resistor voltage equal to the source voltage.

72. Using a transient analysis, crosscheck the crossover design of the final challenge problem, above. Plot the resistor (loudspeaker) voltage across the range of 100 Hz to 20 kHz for both sections.


This page titled 10.7: Exercises is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by James M. Fiore.

Support Center

How can we help?