Skip to main content
Engineering LibreTexts

9.1: Types of Processor Scheduling

  • Page ID
    48918
  • In computing, scheduling is the method by which work is assigned to resources that complete the work. The work may be virtual computation elements such as threads, processes or data flows, which are in turn scheduled onto hardware resources such as processors, network links or expansion cards.

    A scheduler is what carries out the scheduling activity. Schedulers are often implemented so they keep all computer resources busy (as in load balancing), allow multiple users to share system resources effectively, or to achieve a target quality of service. Scheduling is fundamental to computation itself, and an intrinsic part of the execution model of a computer system; the concept of scheduling makes it possible to have computer multitasking with a single central processing unit (CPU).

    Goals of a Scheduler

    A scheduler may aim at one or more goals, for example: maximizing throughput (the total amount of work completed per time unit); minimizing wait time (time from work becoming ready until the first point it begins execution); minimizing latency or response time (time from work becoming ready until it is finished in case of batch activity, or until the system responds and hands the first output to the user in case of interactive activity); or maximizing fairness (equal CPU time to each process, or more generally appropriate times according to the priority and workload of each process). In practice, these goals often conflict (e.g. throughput versus latency), thus a scheduler will implement a suitable compromise. Preference is measured by any one of the concerns mentioned above, depending upon the user's needs and objectives.

    In real-time environments, such as embedded systems for automatic control in industry (for example robotics), the scheduler also must ensure that processes can meet deadlines; this is crucial for keeping the system stable. Scheduled tasks can also be distributed to remote devices across a network and managed through an administrative back end.

    Types of operating system schedulers

    The scheduler is an operating system module that selects the next jobs to be admitted into the system and the next process to run. Operating systems may feature up to three distinct scheduler types: a long-term scheduler (also known as an admission scheduler or high-level scheduler), a mid-term or medium-term scheduler, and a short-term scheduler. The names suggest the relative frequency with which their functions are performed.

    Process scheduler

    The process scheduler is a part of the operating system that decides which process runs at a certain point in time. It usually has the ability to pause a running process, move it to the back of the running queue and start a new process; such a scheduler is known as a preemptive scheduler, otherwise it is a cooperative scheduler.

    We distinguish between "long-term scheduling", "medium-term scheduling", and "short-term scheduling" based on how often decisions must be made.

    Long-term scheduling

    The long-term scheduler, or admission scheduler, decides which jobs or processes are to be admitted to the ready queue (in main memory); that is, when an attempt is made to execute a program, its admission to the set of currently executing processes is either authorized or delayed by the long-term scheduler. Thus, this scheduler dictates what processes are to run on a system, and the degree of concurrency to be supported at any one time – whether many or few processes are to be executed concurrently, and how the split between I/O-intensive and CPU-intensive processes is to be handled. The long-term scheduler is responsible for controlling the degree of multiprogramming.

    In general, most processes can be described as either I/O-bound or CPU-bound. An I/O-bound process is one that spends more of its time doing I/O than it spends doing computations. A CPU-bound process, in contrast, generates I/O requests infrequently, using more of its time doing computations. It is important that a long-term scheduler selects a good process mix of I/O-bound and CPU-bound processes. If all processes are I/O-bound, the ready queue will almost always be empty, and the short-term scheduler will have little to do. On the other hand, if all processes are CPU-bound, the I/O waiting queue will almost always be empty, devices will go unused, and again the system will be unbalanced. The system with the best performance will thus have a combination of CPU-bound and I/O-bound processes. In modern operating systems, this is used to make sure that real-time processes get enough CPU time to finish their tasks.

    Long-term scheduling is also important in large-scale systems such as batch processing systems, computer clusters, supercomputers, and render farms. For example, in concurrent systems, co-scheduling of interacting processes is often required to prevent them from blocking due to waiting on each other. In these cases, special-purpose job scheduler software is typically used to assist these functions, in addition to any underlying admission scheduling support in the operating system.

    Some operating systems only allow new tasks to be added if it is sure all real-time deadlines can still be met. The specific heuristic algorithm used by an operating system to accept or reject new tasks is the admission control mechanism.

    Medium-term scheduling

    The medium-term scheduler temporarily removes processes from main memory and places them in secondary memory (such as a hard disk drive) or vice versa, which is commonly referred to as "swapping out" or "swapping in" (also incorrectly as "paging out" or "paging in"). The medium-term scheduler may decide to swap out a process which has not been active for some time, or a process which has a low priority, or a process which is page faulting frequently, or a process which is taking up a large amount of memory in order to free up main memory for other processes, swapping the process back in later when more memory is available, or when the process has been unblocked and is no longer waiting for a resource.

    In many systems today (those that support mapping virtual address space to secondary storage other than the swap file), the medium-term scheduler may actually perform the role of the long-term scheduler, by treating binaries as "swapped out processes" upon their execution. In this way, when a segment of the binary is required it can be swapped in on demand, or "lazy loaded", also called demand paging.

    Short-term scheduling

    The short-term scheduler (also known as the CPU scheduler) decides which of the ready, in-memory processes is to be executed (allocated a CPU) after a clock interrupt, an I/O interrupt, an operating system call or another form of signal. Thus the short-term scheduler makes scheduling decisions much more frequently than the long-term or mid-term schedulers – a scheduling decision will at a minimum have to be made after every time slice, and these are very short. This scheduler can be preemptive, implying that it is capable of forcibly removing processes from a CPU when it decides to allocate that CPU to another process, or non-preemptive (also known as "voluntary" or "co-operative"), in which case the scheduler is unable to "force" processes off the CPU.

    A preemptive scheduler relies upon a programmable interval timer which invokes an interrupt handler that runs in kernel mode and implements the scheduling function.

    Dispatcher

    Another component that is involved in the CPU-scheduling function is the dispatcher, which is the module that gives control of the CPU to the process selected by the short-term scheduler. It receives control in kernel mode as the result of an interrupt or system call. The functions of a dispatcher mop the following:

    • Context switches, in which the dispatcher saves the state (also known as context) of the process or thread that was previously running; the dispatcher then loads the initial or previously saved state of the new process.
    • Switching to user mode.
    • Jumping to the proper location in the user program to restart that program indicated by its new state.

    The dispatcher should be as fast as possible, since it is invoked during every process switch. During the context switches, the processor is virtually idle for a fraction of time, thus unnecessary context switches should be avoided. The time it takes for the dispatcher to stop one process and start another is known as the dispatch latency.

    Adapted from:
    "Scheduling (computing)" by Multiple ContributorsWikipedia is licensed under CC BY-SA 3.0

    • Was this article helpful?