# 19.3: Euler’s Method

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

Here’s a test to see if you’re as smart as Leonhard Euler. Let’s say you arrive at time ( $$t$$) and measure the current population ($$y$$) and the rate of change ($$r$$). What do you think the population will be after some period of time $$\Delta t$$ has elapsed?

If you said $$y + r \Delta t$$, congratulations! You just invented Euler’s method.

This estimate is based on the assumption that $$r$$ is constant, but in general it’s not, so we only expect the estimate to be good if $$r$$ changes slowly and $$\Delta t$$ is small.

What if we want to make a prediction when $$\Delta t$$ is large? One option is to break $$\Delta t$$ into smaller pieces, called time steps. Then we can use the following equations to get from one time step to the next: \begin{aligned} T_{i+1} &=& T_i + dt \\ Y_{i+1} &=& Y_i + \frac{df}{dt}(t) \, dt\end{aligned}

Here, $$T_i$$ is a sequence of times where we estimate the value of $$y$$, and $$Y_i$$ is the sequence of estimates. For each index $$i$$, $$Y_i$$ is an estimate of $$y(T_i)$$.

If the rate doesn’t change too fast and the time step isn’t too big, Euler’s method is accurate enough for most purposes.

This page titled 19.3: Euler’s Method is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Allen B. Downey (Green Tea Press) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.