Skip to main content
Engineering LibreTexts

14.1: Cyclic Groups

  • Page ID
    86467
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Definition 14.1: Term

    Let \(g \in \mathbb{Z}_{n}^{*}\). Define \(\langle g\rangle_{n}=\left\{g^{i} \% n \mid i \in \mathbb{Z}\right\}\), the set of all powers of \(g\) reduced mod n. Then \(g\) is called a generator of \(\langle g\rangle_{n}\), and \(\langle g\rangle_{n}\) is called the cyclic group generated by \(g\) mod \(n\).

    If \(\langle g\rangle_{n}=\mathbb{Z}_{n}^{*}\), then we say that \(g\) is a primitive root mod \(n.\)

    The definition allows the generator \(g\) to be raised to a negative integer. Since \(g \in \mathbb{Z}_{n}^{*}\), it is guaranteed that \(g\) has a multiplicative inverse \(\bmod n\), which we can call \(g^{-1}\). Then \(g^{-i}\) can be defined as \(g^{-i} \stackrel{\text { def }}{=}\left(g^{-1}\right)^{i}\). All of the usual laws of exponents hold with respect to this definition of negative exponents.

    Example

    Taking \(n=13\), we have:

    \[\begin{aligned} &\langle 1\rangle_{13}=\{1\} \\ &\langle 2\rangle_{13}=\{1,2,4,8,3,6,12,11,9,5,10,7\}=\mathbb{Z}_{13}^{*} \\ &\langle 3\rangle_{13}=\{1,3,9\} \end{aligned}\]

    Thus 2 is a primitive root modulo 13. Each of the groups \(\{1\}, \mathbb{Z}_{13}^{*},\{1,3,9\}\) is a cyclic group under multiplication mod \(13 .\)

    A cyclic group may have more than one generator, for example:

    \[\langle 3\rangle_{13}=\langle 9\rangle_{13}=\{1,3,9\}\]

    Similarly, there are four primitive roots modulo 13 (equivalently, \(\mathbb{Z}_{13}^{*}\) has four different generators); they are \(2,6,7\), and \(11.\)

    Not every integer has a primitive root. For example, there is no primitive root modulo 15. However, when \(p\) is a prime, there is always a primitive root modulo \(p\) (and so \(\mathbb{Z}_{p}^{*}\) is a cyclic group).

    Let us write \(\mathbb{G}=\langle g\rangle=\left\{g^{i} \mid i \in \mathbb{Z}\right\}\) to denote an unspecified cyclic group generated by \(g\). The defining property of \(\mathbb{G}\) is that each of its elements can be written as a power of \(g\). From this we can conclude that:

    • Any cyclic group is closed under multiplication. That is, take any \(X, Y \in \mathbb{G} ;\) then it must be possible to write \(X=g^{x}\) and \(Y=g^{y}\) for some integers \(x, y\). Using the multiplication operation of \(\mathbb{G}\), the product is \(X Y=g^{x+y}\), which is also in \(\mathbb{G}\).
    • Any cyclic group is closed under inverses. Take any \(X \in \mathbb{G} ;\) then it must be possible to write \(X=g^{x}\) for some integer \(x\). We can then see that \(g^{-x} \in \mathbb{G}\) by definition, and \(g^{-x} X=g^{-x+x}=g^{0}\) is the identity element. So \(X\) has a multiplicative inverse \(\left(g^{-x}\right)\) in \(\mathbb{G}\)

    These facts demonstrate that \(\mathbb{G}\) is indeed a group in the terminology of abstract algebra.

    Discrete Logarithms

    It is typically easy to compute the value of \(g^{x}\) in a cyclic group, given \(g\) and \(x\). For example, when using a cyclic group of the form \(\mathbb{Z}_{n}^{*}\), we can easily compute the modular exponentiation \(g^{x} \% n\) using repeated squaring.

    The inverse operation in a cyclic group is called the discrete logarithm problem:

    Definition \(14.2\) (Discrete Log)

    The discrete logarithm problem is: given \(X \in\langle g\rangle\), determine a number \(x\) such that \(g^{x}=X\). Here the exponentiation is with respect to the multiplication operation in \(\mathbb{G}=\langle g\rangle\).

    The discrete logarithm problem is conjectured to be hard (that is, no polynomial-time algorithm exists for the problem) in certain kinds of cyclic groups. 


    This page titled 14.1: Cyclic Groups is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mike Rosulek (Open Oregon State) .

    • Was this article helpful?