Skip to main content
Engineering LibreTexts

15.5: Exercises

  • Page ID
    86476
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(15.1\)

    Prove Claim 15.3.

    Exercise \(15.2\)

    Show that a 2-message key-agreement protocol exists if and only if CPA-secure public-key encryption exists.

    In other words, show how to construct a CPA-secure encryption scheme from any 2-message KA protocol, and vice-versa. Prove the security of your constructions.

    Exercise \(15.3\)

    (a) Suppose you are given an ElGamal encryption of an unknown plaintext \(M \in \mathbb{G}\). Show how to construct a different ciphertext that also decrypts to the same \(M\).

    (b) Suppose you are given two ElGamal encryptions, of unknown plaintexts \(M_{1}, M_{2} \in \mathbb{G}\). Show how to construct a ciphertext that decrypts to their product \(M_{1} \cdot M_{2}\).

    Exercise \(15.4\)

    Suppose you obtain two ElGamal ciphertexts \(\left(B_{1}, C_{1}\right),\left(B_{2}, C_{2}\right)\) that encrypt unknown plaintexts \(M_{1}\) and \(M_{2}\). Suppose you also know the public key \(A\) and cyclic group generator \(g\).

    (a) What information can you infer about \(M_{1}\) and \(M_{2}\) if you observe that \(B_{1}=B_{2}\) ?

    (b) What information can you infer about \(M_{1}\) and \(M_{2}\) if you observe that \(B_{1}=g \cdot B_{2}\) ?

    (c) \(\star\) What information can you infer about \(M_{1}\) and \(M_{2}\) if you observe that \(B_{1}=\left(B_{2}\right)^{2}\) ?


    This page titled 15.5: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mike Rosulek (Open Oregon State) .

    • Was this article helpful?