Skip to main content
Engineering LibreTexts

2.3.3: ISA equations

  • Page ID
    78096
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Considering Equation (2.3.1.1), Equations (2.3.1.2)-(2.3.1.3), and Equation (2.3.2.2), the variations of \(\rho\) and \(p\) within altitude can be obtained for the different layers of the atmosphere that affect atmospheric flight:

    Troposphere (\(0 \le h < 11000 [m]\)): Introducing Equation (2.3.1.1) and Equation (2.3.1.2) in Equation (2.3.2.2), it yields:

    \[\dfrac{d p}{dh} = -\dfrac{p}{R (T_0 - \alpha h)} g.\]

    Integrating between a generic value of altitude \(h\) and the altitude at sea level (\(h = 0\)), the variation of pressure with altitude yields:

    \[\dfrac{p}{p_0} = (1 - \dfrac{\alpha}{T_0} h)^{\tfrac{g}{R\alpha}}.\label{eq2.3.3.2}\]

    With the value of pressure given by Equation (\(\ref{eq2.3.3.2}\)), and entering in the equation of perfect gas (2.3.1.1), the variation of density with altitude yields:

    \[\dfrac{\rho}{\rho_0} = (1 - \dfrac{\alpha}{T_0} h)^{\tfrac{g}{R\alpha} - 1}.\]

    Introducing now the numerical values, it yields:

    \[T[k] = 288.15 - 0.0065 h [m];\]

    \[\rho [kg/m^3] = 1.225 (1 - 22.558 \times 10^{-6} \times h [m])^{4.2559};\]

    \[p [P a] = 101325 (1 - 22.558 \times 10^{-6} \times h[m])^{5.2559}\]

    Tropopause and Inferior part of the stratosphere (\(11000 [m] \le h < 20000 [m]\)): Introducing Equation (2.3.1.1) and Equation (2.3.1.3) in Equation (2.3.2.2), and integrating between a generic altitude (\(h > 11000 [m]\)) and the altitude at the tropopause (\(h_{11} = 11000 [m]\)):

    \[\dfrac{p}{p_{11}} = \dfrac{\rho}{\rho_{11}} = e^{-\tfrac{g}{RT_{11}} (h - h_{11})}\]

    截屏2022-01-10 下午9.41.24.png
    Figure 2.17: ISA atmosphere. © Cmglee / Wikimedia Commons / CC-BY-SA-3.0.

    Introducing now the numerical values, it yields:

    \[T[k] = 216.65;\]

    \[\rho [kg/m^3] = 0.3639e^{-157.69 \cdot 10^{-6} (h[m] - 11000)};\]

    \[p [P a] = 22632 e^{-157.69 \cdot 10^{-6} (h[m] - 11000)}.\]


    2.3.3: ISA equations is shared under a CC BY-SA 3.0 license and was authored, remixed, and/or curated by Manuel Soler Arnedo via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?