Skip to main content
Engineering LibreTexts

2.9: Kinetic and Thermodynamic Control

  • Page ID
    101153

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives

    By the end of this section, you should be able to:

    • Understand kinetic and thermodynamic control

    Reactants can sometimes give rise to a variety of products.

    Consider the nitration of nitrobenzene:

    Capture-nitration-of-nitrobenzene-300x75.png

    The relative portion of the products before reaching equilibrium is given by the ratio of the rates of production.

    \[A+B→P_{1}\]

    \[A+B→P_{2}\]

    Here, before equilibrium:

    \(\frac{[P_{2}]}{[P_{1}]}=\frac{k_{r,2}}{k_{r,1\)

    This is called kinetic control, and it is dictated by reaction rates.
    As opposed to thermodynamic control, which is dictated by reaction equilibrium (after a long time):

    Say we have the system:

    Capture-Kinetic-and-thermodynamic-300x198.png

    If \(k_{e1},k_{e2}\text{<<}k_{r1},k_{r2}\)

    Then at any time before the equilibrium reaction start severely affecting product concentration, the reaction simplifies to:

    Capture-kinetic-simplify-300x197.png
    \(\frac{[P_{1}]}{[P_{2}]}=\frac{k_{r1}}{k_{r2}}\)

    The reaction is kinetically controlled: the amount of products depends on the rates of reaction.

    Proof to show: \(\frac{[P_{1}]}{[P_{2}]}=\frac{k_{r1}}{k_{r2}}\)
    \begin{align*}
    r_{P1}=k_{r1}[A][B]&=\frac{d[P1]}{dt}\\
    r_{P2}=k_{r2}[A][B]&=\frac{d[P2]}{dt}
    \end{align*}

    Say that both \(P_{1}\), \(P_{2}\) start at a concentration of 0. We can express the change in concentration for \(P_{1}\) and \(P_{2}\) at any time before [A][B] reaches 0. Note that once [A][B] reaches 0, the equilibrium reaction starts to dominate as we no longer have forward reactions that consume A and B to produce P1 and P2.

    \[\frac{[P1]}{[P2]}=\frac{\frac{d[P_{1}]}{dt}}{\frac{d[P_{2}]}{dt}}=\frac{k_{r1}[A][B]}{k_{r2}[A][B]}=\frac{k_{r1}}{k_{r2}}\]

    If \(k_{e1},k_{e2}>>k_{r1},k_{r2}\)

    Then at any given time, this reaction simplifies to:

    Capture-thermodynamic-simplify-1-300x89.png
    \(\frac{[P_{1}]}{[P_{2}]}=\frac{k_{e1}}{k_{e2}}\)

    The reaction is thermodynamically controlled : the amount of products depends on the equilibrium state.

    Proof to show: \(\frac{[P_{1}]}{[P_{2}]}=\frac{k_{e1}}{k_{e2}}\):
    At equilibrium:

    Forward reaction rate: \(\frac{d[P2]}{dt}=k_{e2}[P1]\)

    Reverse reaction rate: \(\frac{d[P1]}{dt}=k_{e1}[P2]\)

    At equilibrium, the forward and reverse reaction rates are equal:

    \begin{align*}
    k_{e2}[P1] & = k_{e1}[P2]\\
    \frac{[P_{1}]}{[P_{2}]} & = \frac{k_{e1}}{k_{e2}}
    \end{align*}


    This page titled 2.9: Kinetic and Thermodynamic Control is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by .

    • Was this article helpful?