Skip to main content
Engineering LibreTexts

17: Appendix F- The Cauchy Stress Tensor

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    In section 6.3.2 we defined the Cauchy array, whose elements are the components of the stress vector \(\vec{f}\) acting on each of the three coordinate planes:

    \[\tau_{i j}=f_{j}^{(i)}.\]

    In this appendix we will demonstrate three additional properties of this array:

    • The stress vector acting on any plane is given by \(f_j=\tau_{ij}n_i\), where \(\hat{n}\) is the unit normal to the plane in question.
    • The array \(\underset{\sim}{\tau}\) transforms as a 2nd-order tensor.
    • \(\underset{\sim}{\tau}\) is symmetric.

    We will do this by applying Newton’s second law to carefully chosen fluid parcels and imagining the result if we take the size of the parcel to zero.

    17: Appendix F- The Cauchy Stress Tensor is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Bill Smyth via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?