Skip to main content
Engineering LibreTexts

4.6.1.5: Neutral frequency of Floating Bodies

  • Page ID
    692
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    This case is similar to pendulum (or mass attached to spring). The governing equation for the pendulum is \[ll\ddot{\beta} - g\beta = 0 \] Where here \(ll\) is length of the rode (or the line/wire) connecting the mass with the rotation point. Thus, the frequency of pendulum is \(\frac{1}{2\pi}\sqrt{\frac{g}{ll}}\) which measured in \(Hz\). The period of the cycle is \(2\pi \sqrt{ll/g}\). Similar situation exists in the case of floating bodies. The basic differential equation is used to balance and is \[I\ddot{\beta} - V \rho_{s} \overline{GM} \beta = 0 \] In the same fashion the frequency of the floating body is \[\frac{1}{2\pi}\sqrt{\frac{V\rho_{s}\overline{GM}}{I_{body}}}\] and the period time is \[2\pi\sqrt{\frac{I_{body}}{V\rho_{s}\overline{GM}}}\] In general, the larger \(\overline{GM}\) the more stable the floating body is. Increase in \(\overline{GM}\) increases the frequency of the floating body. If the floating body is used to transport humans and/or other creatures or sensitive cargo it requires to reduce the \(\overline{GM}\) so that the traveling will be smoother.

    Contributors and Attributions

    • Dr. Genick Bar-Meir. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or later or Potto license.


    This page titled 4.6.1.5: Neutral frequency of Floating Bodies is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.


    This page titled 4.6.1.5: Neutral frequency of Floating Bodies is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Genick Bar-Meir via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?