Skip to main content
Engineering LibreTexts

2.1: Maxwell's Equations

  • Page ID
    44642
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Maxwell’s equations are given by

    \[\vec{\nabla} \times \vec{H} = \vec{j} + \dfrac{\partial \vec{D}}{\partial t}, \nonumber \]

    \[\vec{\nabla} \times \vec{E} = -\dfrac{\partial \vec{B}}{\partial t}, \label{eq2.1.2} \]

    \[\vec{\nabla} \cdot \vec{D} = \rho, \nonumber \]

    \[\vec{\nabla} \cdot \vec{B} = 0 \nonumber \].

    The material equations accompanying Maxwell’s equations are:

    \[\vec{D} = \epsilon_0 \vec{E} + \vec{P}, \nonumber \]

    \[\vec{B} = \mu_0 \vec{H} + \vec{M}. \nonumber \]

    Here, \(\vec{E}\) and \(\vec{H}\) are the electric and magnetic field, \(\vec{D}\) the dielectric flux, \(\vec{B}\) the magnetic flux, \(\vec{j}\) the current density of free carries, \(\rho\) is the free charge density, \(\vec{P}\) is the polarization, and \(\vec{M}\) the magnetization. By taking the curl of Equation \ref{eq2.1.2} and considering \(\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = \vec{\nabla} (\vec{\nabla} \vec{E}) - \Delta \vec{E}\), we obtain

    \[\Delta \vec{E} - \mu_0 \dfrac{\partial}{\partial t} \left (\vec{j} + \epsilon_0 \dfrac{\partial \vec{E}}{\partial t} + \dfrac{\partial \vec{P}}{\partial t} \right ) = \dfrac{\partial}{\partial t} \vec{\nabla} \times \vec{M} + \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) \nonumber \]

    and hence

    \[\left (\Delta - \dfrac{1}{c_0^2} \dfrac{\partial^2}{\partial t^2} \right ) \vec{E} = \mu_0 \left ( \dfrac{\partial vec{j}}{\partial t} + \dfrac{\partial^2}{\partial t^2} \vec{P} \right ) + \dfrac{\partial}{\partial t} \vec{\nabla} \times \vec{M} + \vec{\nabla} ( \vec{\nabla} \cdot \vec{E}).\label{eq2.1.8} \]

    The vacuum velocity of light is

    \[c_0 = \sqrt{\dfrac{1}{\mu_0 \epsilon_0}}. \nonumber \]


    This page titled 2.1: Maxwell's Equations is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz X. Kaertner (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.