Skip to main content
Engineering LibreTexts

2.8: Pulse Shapes and Time-Bandwidth Products

  • Page ID
    48948
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The following table 2.2 shows pulse shape, spectrum and time bandwidth products of some often used pulse forms.

    \(a(t)\) \(\hat{a} (\omega) = \int_{-\infty}^{\infty} a(t) e^{-j\omega t} dt\) \(\Delta t\) \(\Delta t \cdot \Delta f\)
    Gauss: \(e^{-\tfrac{t^2}{t\tau^2}}\) \(\sqrt{2\pi} \tau e^{-\tfrac{1}{t} \tau^2 \omega^2}\) \(2\sqrt{\ln 2} \tau\) 0.441

    Hyperbolicsecant:

    sech (\(\dfrac{t}{\tau}\))

    \(\dfrac{\tau}{2}\) sech (\(\dfrac{\pi}{2} \tau \omega\)) \(1.7627 \tau\) 0.315
    Rect-function:
    \(= \begin{cases} 1, |t| \le \tau/2 \\ 0, |t| > \tau/2 \end{cases}\)
    \(\tau \dfrac{\sin (\tau \omega/2)}{\tau \omega/2}\) \(\tau\) 0.886
    Lorentzian: \(\dfrac{1}{1 + (t/\tau)^2\) \(2\pi \tau e^{-|\tau \omega|}\) \(1.287 \tau\) 0.142
    Double-Exponential: \(e^{-|\tfrac{t}{\tau}|}\) \(\dfrac{\tau}{1 + (\omega \tau)^2}\) \(\ln 2 \tau\) 0.142

    截屏2021-04-06 上午11.49.24.png
    Figure 2.14: Fourier relationship to table above.
    Figure by MIT OCW.
    截屏2021-04-06 上午11.49.57.png
    Figure 2.15: Fourier relationships to table above. Figure by MIT OCW.

    Bibliography

    [1] I. I. Rabi: "Space Quantization in a Gyrating Magnetic Field,". Phys. Rev. 51, 652-654 (1937).

    [2] B. R. Mollow, "Power Spectrum of Light Scattered by Two-Level Sys- tems," Phys. Rev 188, 1969-1975 (1969).

    [3] P. Meystre, M. Sargent III: Elements of Quantum Optics, Springer Verlag (1990).

    [4] L. Allen and J. H. Eberly: Optical Resonance and Two-Level Atoms, Dover Verlag (1987).

    [5] G. B. Whitham: "Linear and Nonlinear Waves," John Wiley and Sons, NY (1973).


    This page titled 2.8: Pulse Shapes and Time-Bandwidth Products is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Franz X. Kaertner (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.