Skip to main content
Engineering LibreTexts

2.2: Complex Exponential Notation

  • Page ID
    55516
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Start by recognizing a geometric interpretation for a complex number. If we plot the real part on the horizontal (x) axis and the imaginary part on the vertical (y) axis, then the complex number \(\ \underline{z}=x+j y\) (where \(\ j=\sqrt{-1}\)) represents a vector as shown in Figure 1. Note that this vector may be represented not only by its real and imaginary components, but also by a magnitude and a phase angle:

    Screen Shot 2021-07-19 at 12.32.48 PM.pngFigure 1: Representation of the complex number \(\ \underline{z}=x+j y\)
    Screen Shot 2021-07-19 at 12.33.47 PM.pngFigure 2: Representation of \(\ e^{j \phi}\)

    \[\ |\underline{z}|=\sqrt{x^{2}+y^{2}}\label{1} \]

    \[\ \phi=\arctan \left(\frac{y}{x}\right)\label{2} \]

    The basis for complex exponential notation is the celebrated Euler Relation:

    \[\ e^{j \phi}=\cos (\phi)+j \sin (\phi)\label{3} \]

    which has a representation as shown in Figure 2.

    Now, a comparison of Figures 1 and 2 makes it clear that, with definitions (1) and (2),

    \[\ \underline{z}=x+j y=|\underline{z}| e^{j \phi}\label{4} \]

    It is straightforward, using (3) to show that:

    \[\ \cos (\phi)=\frac{e^{j \phi}+e^{-j \phi}}{2}\label{5} \]

    \[\ \sin (\phi)=\frac{e^{j \phi}-e^{-j \phi}}{2 j}\label{6} \]

    Screen Shot 2021-07-19 at 12.38.35 PM.pngFigure 3: Representation Of A Complex Number And Its Conjugate

    The complex exponential is a tremendously useful type of function. Note that the product of two numbers expressed as exponenentials is the same as the exponential of the sums of the two exponents:

    \[\ e^{a} e^{b}=e^{a+b}\label{8} \]

    Note that it is also true that the reciprocal of a number in exponential notation is just the exponential of the negative of the exponent:

    \[\ \frac{1}{e^{a}}=e^{-a}\label{9} \]

    Then, if we have two numbers \(\ \underline{z}_{1}=\left|\underline{z}_{1}\right| e^{j \phi_{1}}\) and \(\ \underline{z}_{2}=\left|\underline{z}_{2}\right| e^{j \phi_{2}}\), then the product of the two numbers is:

    \[\ \underline{z}_{1} \underline{z}_{2}=\left|\underline{z}_{1} \| \underline{z}_{2}\right| e^{j\left(\phi_{1}+\phi_{2}\right)}\label{10} \]

    and the ratio of the two numbers is:

    \[\ \frac{\underline{z}_{1}}{\underline{z}_{2}}=\frac{\left|\underline{z}_{1}\right|}{\left|\underline{z}_{2}\right|} e^{j\left(\phi_{1}-\phi_{2}\right)}\label{11} \]

    The complex conjugate of a number \(\ \underline{z}=x+j y\) is given by:

    \[\ z^{*}=x-j y\label{12} \]

    The sum of a complex number and its conjugate is real:

    \[\ \underline{z}+\underline{z}^{*}=2 \operatorname{Re}(\underline{z})=2 x\label{13} \]

    while the difference is imaginary:

    \[\ \underline{z}-\underline{z}^{*}=2 j \operatorname{Im}(\underline{z})=2 j y\label{14} \]

    where we have used the two symbols \(\ {Re}(\cdot)\) and \(\ {Im}(\cdot)\) to represent the operators which extract the real and imaginary parts of the complex number.

    The complex conjugate of a complex number \(\ \underline{z}=|\underline{z}| e^{j \phi}\) may also be written as:

    \[\ \underline{z}^{*}=|\underline{z}| e^{-j \phi}\label{15} \]

    so that the product of a complex number and its conjugate is real:

    \[\ \underline{z z}^{*}=|\underline{z}| e^{j \phi}|\underline{z}| e^{-j \phi}=|\underline{z}|^{2}\label{16} \]


    This page titled 2.2: Complex Exponential Notation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James Kirtley (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.