Skip to main content
Engineering LibreTexts

2.10: Compensated Line

  • Page ID
    55541
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Screen Shot 2021-07-20 at 12.00.14 PM.pngFigure 20: Transmission Line Model

    Perhaps a more commonly used model for a transmission line is as shown in Figure 20. This represents not only the fact that most transmission lines have, in addition to series inductance, parallel capacitance but also the fact that many transmission lines are shunt compensated. This may be represented as a two-port network with the admittance parameters, using \(\ X_{L}=j \omega L\) and \(\ X_{C}=\frac{-j}{\omega C}\),:

    \(\ \begin{array}{l}
    \underline{Y}_{s s} \quad=\quad \frac{1}{j X_{L}}-\frac{1}{j X_{C 1}} \\
    \underline{Y}_{s r}=\underline{Y}_{r s}=\frac{1}{j X_{L}} \\
    \underline{Y}_{r r} \quad=\quad \frac{1}{j X_{L}}-\frac{1}{j X_{C 2}}
    \end{array}\)

    It is fairly clear that, for voltage sources at both ends, real and reactive power flow are:

    \(\ \begin{aligned}
    P_s&=\frac{V_sV_r\sin{\delta}}{X_L}\\
    Q_{s} &=V_{s}^{2}\left(\frac{1}{X_{L}}-\frac{1}{X_{C 1}}\right)-\frac{V_{s} V_{r} \cos \delta}{X_{L}} \\
    P_{r} &=-\frac{V_{s} V_{r} \sin \delta}{X_{L}} \\
    Q_{r} &=V_{s}^{2}\left(\frac{1}{X_{L}}-\frac{1}{X_{C 2}}\right)-\frac{V_{s} V_{r} \cos \delta}{X_{L}}
    \end{aligned}\)

    Screen Shot 2021-07-20 at 12.05.20 PM.pngFigure 21: Power Circle, Equal Voltages, Compensation Offset

    The power circle for this sort of line is similar to that of the simpler model, but the center is offset to smaller reactive component, as shown in Figure 21.

    An interesting feature of transmission lines is illustrated by what might happen were the receiving line to be open: in that case:

    \(\ \underline{V}_{r}=\underline{V}_{s} \frac{1}{1-\omega^{2} L C}\)

    Depending on the values of frequency, inductance and capacitance this could be arbitrarily large, and this is a potential problem, particularly for longer lines, as we will discuss in the next section.


    This page titled 2.10: Compensated Line is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by James Kirtley (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.