Skip to main content
Engineering LibreTexts

6.15: The first Brillouin zone

  • Page ID
    52348
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Since there are only N distinct values of the coefficients (corresponding to one period of the Fourier transform), we typically restrict k to the N values in the range \(-N/2 < n \leq N/2\), i.e.

    \[ -\frac{\pi}{a_{0}} < k \leq \frac{\pi}{a_{0}} . \nonumber \]

    This is known as the first Brillouin zone. Other values of k are either not permitted by periodic boundary conditions, or \(c(x)=\text{exp}[ikx]\) reduces to one of the N solutions. For example, consider \(k = 2\pi (n+N)/L\):

    \[ c(x) = e^{i\frac{2\pi (n+N)}{L}x} = e^{i\frac{2\pi (n+N)}{Na_{0}}ra_{0}} = e^{i\frac{2\pi n}{N}r+i2\pi r} e^{i\frac{2\pi n}{N}r} = e^{i\frac{2\pi n}{L}x} \nonumber \]

    where \(a_{0}\) is the spacing between unit cells.

    Screenshot 2021-05-25 at 17.12.31.png
    Figure \(\PageIndex{1}\): A molecular orbital is described by linear combinations of the wavefunction of the unit cell. The coefficients, \(c_{r}\), are phase factors. The phase coefficients are discrete – there are only N of them. Thus, the Fourier transform of the coefficients contains only N unique values (it is periodic). We can restrict the range of k values without losing information. Typically, we chose k values in the first Brillouin zone (\((-\pi /a_{0} < k \leq \pi /a_{0})\)). Note also that the application of periodic boundary conditions fixes the spacing between k values at \(2\pi /L\).

    6.15: The first Brillouin zone is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?