# 2.7: Scattering Parameter Two-Port Relationships

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

## 2.7.1 Change in Reference Plane

It is often necessary during $$S$$ parameter measurements of two-port devices to measure components at a position different from that actually desired. An example is shown in Figure $$\PageIndex{2}$$(a). From direct measurement the $$S$$ parameters are obtained, and thus the $$\mathbf{T}$$ matrix at Planes $$\mathsf{1}$$ and $$\mathsf{2}$$. However, $$\mathbf{T}_{\text{DUT}}$$ referenced to Planes $$\mathsf{1}'$$ and $$\mathsf{2}'$$ is required. Now,

$\label{eq:1}\mathbf{T}=\mathbf{T}_{\theta_{1}}\mathbf{T}_{\text{DUT}}\mathbf{T}_{\theta_{2}}$

Figure $$\PageIndex{1}$$: Terminated two-port network.

Figure $$\PageIndex{2}$$: Two-port measurement setup: (a) a two-port comprising a device under test ($$\text{DUT}$$) and transmission line sections that create a reference plane at Planes $$\mathsf{1}$$ and $$\mathsf{2}$$; and (b) representation as cascaded two-port networks.

Figure $$\PageIndex{3}$$: Two-port with parameters suitable for defining $$S$$ and $$ABCD$$ parameters.

and so

$\label{eq:2}\mathbf{T}_{\text{DUT}}=\mathbf{T}_{\theta_{1}}^{-}\mathbf{TT}_{\theta_{2}}^{-1}$

A section of line with electrical length $$\theta$$ and port impedances equal to its characteristic impedance has

$\label{eq:3}\mathbf{S}=\left[\begin{array}{cc}{0}&{\text{e}^{-\jmath\theta}}\\{\text{e}^{-\jmath\theta}}&{0}\end{array}\right]$

and

$\label{eq:4}\mathbf{T}_{\theta}=\left[\begin{array}{cc}{\text{e}^{\jmath\theta}}&{0}\\{0}&{\text{e}^{-\jmath\theta}}\end{array}\right]$

Therefore Equation $$\eqref{eq:2}$$ becomes

$\label{eq:5}\mathbf{T}_{\text{DUT}}=\left[\begin{array}{cc}{T_{11}\text{e}^{-\jmath(\theta_{1}+\theta_{2})}}&{T_{12}\text{e}^{-\jmath(\theta_{1}-\theta_{2})}} \\ {T_{21}\text{e}^{\jmath(\theta_{1}-\theta_{2})}}&{T_{22}\text{e}^{\jmath(\theta_{1}+\theta_{2})}}\end{array}\right]$

and then the desired $$S$$ parameters of the $$\text{DUT}$$ are obtained as

$\label{eq:6}\mathbf{S}_{\text{DUT}}=\left[\begin{array}{cc}{S_{11}\text{e}^{\jmath 2\theta_{1}}}&{S_{12}\text{e}^{\jmath(\theta_{1}+\theta_{2})}}\\{S_{21}\text{e}^{\jmath(\theta_{1}+\theta_{2})}}&{S_{22}\text{e}^{\jmath 2\theta_{2}}}\end{array}\right]$

## 2.7.2 Conversion Between $$S$$ and $$ABCD$$ Parameters

Figure $$\PageIndex{3}$$ can be used to relate the parameters of the two views of the network. If both ports have the same reference impedance $$Z_{0}$$, then

$\left[\begin{array}{c}{V_{1}}\\{I_{1}}\end{array}\right]=\left[\begin{array}{cc}{A}&{B}\\{C}&{D}\end{array}\right]\left[\begin{array}{c}{V_{2}}\\{I_{2}}\end{array}\right]\quad\text{and}\quad\left[\begin{array}{c}{b_{1}}\\{b_{2}}\end{array}\right]=\left[\begin{array}{cc}{S_{11}}&{S_{12}}\\{S_{21}}&{S_{22}}\end{array}\right]\left[\begin{array}{c}{a_{1}}\\{a_{2}}\end{array}\right]\nonumber$

The $$S$$ parameters are then expressed as

$\label{eq:7}\begin{array}{ll}{S_{11}=\frac{A+B/Z_{0}-CZ_{0}-D}{\Delta}}&{S_{12}=\frac{2(AD-BC)}{\Delta}} \\ {S_{21}=\frac{2}{\Delta}}&{S_{22}=\frac{-A+B/Z_{0}-CZ_{0}+D}{\Delta}}\end{array}$

where

$\label{eq:8}\Delta=A+B/Z_{0}+CZ_{0}+D$

The $$ABCD$$ parameters can be expressed in terms of the $$S$$ parameters as

\begin{align}\label{eq:9}A&=\frac{(1+S_{11})(1-S_{22})+S_{12}S_{21}}{2S_{21}}\\ \label{eq:10}B&=Z_{0}\frac{(1+S_{11})(1+S_{22})-S_{12}S_{21}}{2S_{21}} \\ \label{eq:11}C&=\frac{1}{Z_{0}}\frac{(1-S_{11})(1-S_{22})-S_{12}S_{21}}{2S_{21}} \\ \label{eq:12}D&=\frac{(1-S_{11})(1+S_{22})+S_{12}S_{21}}{2S_{21}}\end{align}

2.7: Scattering Parameter Two-Port Relationships is shared under a CC BY-NC license and was authored, remixed, and/or curated by LibreTexts.