2.11: References
- Page ID
- 46021
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)[1] QORVO, “FPD6836P70 data sheet, low noise high frequency packaged enhancement mode phemt transistor,” http://www.qorvo.com.
[2] M. Steer, Microwave and RF Design, Networks, 3rd ed. North Carolina State University, 2019.
[3] J. Rollett, “Stability and power-gain invariants of linear twoports,” Circuit Theory, IRE Trans. on, vol. 9, no. 1, pp. 29–32, Mar. 1962.
[4] ——, “Correction to stability and power-gain invariants of linear twoports,” IEEE Trans. on Circuit Theory, vol. 10, no. 1, p. 107, Mar. 1963.
[5] M. Gupta, “Power gain in feedback amplifiers, a classic revisited,” IEEE Trans. on Microwave Theory and Techniques, vol. 40, no. 5, pp. 864–879, May 1992.
[6] H. Fukui, “Available power gain, noise figure, and noise measure of two-ports and their graphical representations,” IEEE Trans. on Circuit Theory, vol. 13, no. 2, pp. 137–142, Jun. 1966.
[7] M. Steer, Microwave and RF Design, Transmission Lines, 3rd ed. North Carolina State University, 2019.
[8] S. Lucyszyn, “Power-added efficiency errors with RF power amplifiers,” Int. J. of Electronics, vol. 82, no. 3, pp. 303–312, Mar. 1997.
[9] F. Raab, P. Asbeck, S. Cripps, P. Kenington, Z. Popovic, N. Pothecary, J. Sevic, and N. Sokal, “Power amplifiers and transmitters for RF and microwave,” IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 3, pp. 814–826, Mar. 2002.
[10] L. Esaki and R. Tsu, “Superlattice and negative differential conductivity in semiconductors,” IBM Journal of Research and Development, vol. 14, no. 1, pp. 61–65, Jan. 1970.
[11] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Prentice Hall, 1997.
[12] A. Suarez and R. Quere, Stability Analysis of Nonlinear Microwave Circuits. Artech House, 2003.
[13] M. Edwards and J. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” IEEE Trans. on Microwave Theory and Techniques, vol. 40, no. 12, pp. 2303–2311, Dec. 1992.
[14] T. Ha, Solid State Microwave Amplifier Design. Wiley, 1981.
[15] D. Woods, “Reappraisal of the unconditional stability criteria for active 2-port networks in terms of s parameters,” IEEE Trans. on Circuits and Systems, vol. 23, no. 2, pp. 73–81, Feb. 1976.
[16] W. Ku, “Unilateral gain and stability criterion of active two-ports in terms of scattering parameters,” Proc. of the IEEE, vol. 54, no. 11, pp. 1617–1618, Nov. 1966.
[17] D. Youla, “On the stability of linear systems,” IEEE Trans. on Circuit Theory, vol. 10, no. 2, pp. 276–279, Jun. 1963.
[18] R. Meys, “Review and discussion of stability criteria for linear 2-ports,” IEEE Trans. on Circuits and Systems, vol. 37, no. 11, pp. 1450–1452, Nov. 1990.
[19] G. Bodway, “Two port power flow analysis using generalized scattering parameters,” Microwave Journal, pp. 61–69, May 1967.
[20] E. Faulkner, Introduction to the Theory of Linear Systems. Chapman & Hall, 1969.
[21] J. D’Azzo and C. Houpis, Feedback Control System Analysis and Synthesis. McGraw-Hill, 1960.
[22] A. Pippard, Response & Stability. Cambridge University Press, 1985.
[23] G. Franklin, Feedback Control of Dynamic Systems. Prentice Hall, 2002.
[24] K. Wang, M. Jones, and S. Nelson, “The s-probe-a new, cost-effective, 4-gamma method for evaluating multi-stage amplifier stability,” in 1992 IEEE MTT-S Int. Microwave Symp. Dig., Jun. 1992, pp. 829–832.
[25] H. Bode, Network analysis and feedback amplifier design. Van Nostrand Company, 1951.
[26] M. Steer, Microwave and RF Design, Modules, 3rd ed. North Carolina State University, 2019.
[27] G. Vendelin, A. Pavio, and U. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques. Wiley, 1990.
[28] I. Bahl and P. Bhartia, Microwave Solid State Circuit Design. John Wiley & Sons, 1988.
[29] A. Grebennikov, RF and microwave power amplifier design. McGraw-Hill, 2005.
[30] A. Shirvani, Design and Control of RF Power Amplifiers. Kluwer Academic, 2003.
[31] P. Kenington, High-Linearity RF Amplifier Design. Artech House, 2000.
[32] A. Grebennikov, Switchmode RF Power Amplifiers. Elsevier/Newnes, 2007.
[33] S. Cripps, RF Power Amplifiers for Wireless Communications. Artech House, 1999.
[34] ——, Advanced techniques in RF Power Amplifiers Design. Artech House, 2002.
[35] P. Reynaert, RF Power Amplifiers for Mobile Communications. Springer, 2006.
[36] M. Steer, J. Sevic, and B. Geller, “Editorial,” IEEE Trans. on Microwave Theory and Techniques, vol. 49, no. 6, pp. 1145–1147, Jun. 2001.
[37] M. Steer and K. Gharaibeh, “Volterra modeling for analog and microwave circuits,” in Encyclopedia of RF and Microwave Engineering. John Wiley, 2005, pp. 5507–5514.
[38] J. Sevic and M. Steer, “Analysis of GaAs MESFET spectrum regeneration driven by a \(π/4\)-DQPSK modulated source,” in 1995 IEEE MTT-S Int. Microwave Symp. Dig., May 1995, pp. 1375–1378.
[39] J. Pedro and N. Carvalho, Intermodulation Distortion in Microwave and Wireless Circuits. Artech House, 2003.
[40] T. Turlington, Behavioral Modeling of Nonlinear RF and Microwave Devices. Artech House, 2000.
[41] S. Maas, Nonlinear Microwave and RF Circuits, 2nd ed. Artech House, 2003.
[42] J. Vuolevi and T. Rahkonen, Distortion in RF Power Amplifiers. Artech House, 2003.
[43] J. Hu, K. Gard, N. Carvalho, and M. Steer, “Time-frequency characterization of longterm memory in nonlinear power amplifiers,” in Microwave Symp. Dig., 2008 IEEE MTT-S Int., Jun. 2008, pp. 269–272.
[44] K. Gharaibeh and M. Steer, “Characterization of cross modulation in multichannel amplifiers using a statistically based behavioral modeling technique,” IEEE Trans. on Microwave Theory and Techniques, vol. 51, no. 12, pp. 2434–2444, 2003.
[45] M. Steer, J. Bandler, and C. Snowden, “Computer-aided design of RF and microwave circuits and systems,” IEEE Trans. on Microwave Theory and Techniques, vol. 50, no. 3, pp. 996–1005, Mar. 2002.
[46] H. Gutierrez, K. Gard, and M. Steer, “Nonlinear gain compression in microwave amplifiers using generalized power-series analysis and transformation of input statistics,” IEEE Trans. on Microwave Theory and Techniques, vol. 48, no. 10, pp. 1774–1777, Oct. 2000.
[47] G. Rhyne and M. Steer, “Generalized power series analysis of intermodulation distortion in a MESFET amplifier simulation and experiment,” in 1987 IEEE MTT-S Int. Microwave Symp. Dig., 1987, pp. 115–118.
[48] K. Gard, H. Gutierrez, and M. Steer, “Characterization of spectral regrowth in microwave amplifiers based on the nonlinear transformation of a complex gaussian process,” IEEE Trans. on Microwave Theory and Techniques, vol. 47, no. 7, pp. 1059–1069, Jul. 1999.